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Non-indigenous plant species have been frequently reported as successful invaders in island
environments, changing plant community composition and structure. This is the case of the sweet
pittosporum (Pittosporum undulatum), native from Australia, which is one of the most successful plant
invaders in the Azores archipelago. Data extracted from recent forestry inventories were used to model
and map the potential distribution of P. undulatum in Sdo Miguel, the larger island of the Azores. Current
distribution of P. undulatum is related to climate, altitude and some human activity effects. Further
analysis of the areas under risk of invasion showed that protected areas are under potential threat,
although only a few native forest remnants seem to be threatened due to future expansion of
P. undulatum, since the current distribution of these native communities has been reduced due to
clearing and competition with invasive plants. We discuss the threats that any further expansion of the
species will represent for low-altitude native forests, as well as the utility of species distribution models
in the assessment of the areas under risk of invasion.

© 2009 Elsevier GmbH. All rights reserved.

Introduction

Biological invasions, i.e. the introduction and spread of
organisms from one region to another by human activities,
purposefully or accidentally, are one of the main alterations of
the biosphere, along with climate change and natural ecosystem
destruction (Williamson 1996; Parker et al. 1999; Simberloff
2004). The steady increase in travel and trade activities world-
wide has resulted in a high frequency of successful invasions in
many ecological systems (Shigesada & Kawasaki 1997). Biological
invasions are thus one of the most important problems faced by
island ecosystems, due to the peculiarities of the native island
fauna and flora (Simberloff 1995; Ramos 1996; Olesen et al.
2002). A particular case is that of invasive plants, for they
can end up excluding native plant species from their original
habitats through direct resource competition, a process of biotic
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homogenisation that is also common to animals. Such replace-
ment produces dramatic changes in the functioning of island
systems, causing serious problems not only for conservation,
but also in forestry, farming, hydrologic cycles and even in human
health. Thus, the effects of invasive plants on islands have been
extensively studied in many archipelagos (e.g., DeWalt et al.
2004; Daehler 2005; Kingston & Waldren 2005; Gangoso et al.
2006).

It was thus not surprising that the recent characterisation of
the non-indigenous flora of the Azores showed striking numbers
of alien plant species. No less than 60% of the approximately 900
species of vascular plants inhabiting the Azorean archipelago
were introduced by human activities, and are now considered as
either naturalised or frequently escaped (Silva et al. 2000; Silva
2001; Silva & Smith 2004, 2006; Borges et al. 2005). In particular,
the native vegetation on S3o Miguel Island is threatened by
several aggressive invaders, including Pittosporum undulatum,
Hedychium gardnerianum, Gunnera tinctoria and Clethra arborea
(Bibby & Charlton 1991; Silva 2001; Silva & Smith 2006). As a
result, most forest patches are dominated by P. undulatum, Acacia
melanoxylon and Eucalyptus globulus, along with few individuals
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remaining from former native forests, like Morella faya and Laurus
azorica.

Perhaps the most aggressive of these invaders is Pittosporum
undulatum (sweet pittosporum). This tree from the Pittosporaceae
family is an invader in many tropical and subtropical mountain
forests and in warm temperate regions of both hemispheres and
many islands (Gleadow & Ashton 1981; Manders & Richardson
1992; Goodland & Healey 1996; Rose 1997a; Rose & Fairweather
1997; US Forest Service 2007-2008). At the Azores, it was initially
introduced as a hedgerow species for the protection of orange tree
plantations (Drouet 1866). Although it was cited as being established
in the archipelago by the end of the 19th century (Trelease 1897), the
sweet pittosporum has been able to colonise a wide range of habitats
in all Azorean islands in less than a century (Sjogren 1973; Schaefer
2003). Currently, it is one of the most important threats to native
Azorean biota. However, several economical activities are now
dependent on P. undulatum, namely the production of honey and
the cultivation of pineapple in greenhouses in Sio Miguel Island,
where the foliage is used to produce compost.

The aim of this study is to identify the areas under potential
threat from the future spread of Pittosporum undulatum in Sdo
Miguel. We use data on a recent exhaustive forest inventory, species
distribution modelling (SDM) methodologies and logistic regres-
sions to (i) study the current determinants of the distribution of
P. undulatum in Sao Miguel, (ii) map its potential distribution in the
island, and (iii) identify the areas of natural vegetation that could be
under threat due to future expansion of the invader. To do this, we
first use Ecological Niche Factor Analysis (ENFA; see Hirzel et al.
2002, 2004) to identify areas where the species is not able to live.
Then, we use regression analyses to identify the determinants of its
presence and abundance, as well as to model its potential
distribution. Finally, we evaluate the potential threats for current
natural vegetation remnants, using a spatially explicit framework in
a GIS environment.

Methods
Study area

Sdo Miguel is the largest island of the Azores, an archipelago of
volcanic origin located in the North Atlantic Ocean, about
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1,500 km from mainland Europe. The nine Azorean islands
span 615 km along a SE-NW axis, Sdo Miguel is part of the
Eastern group together with Santa Maria, the oldest and eastern-
most island, which is placed 81 km to the southeast (Fig. 1).
Sdo Miguel Island extends along an E-W axis which starts in
the old solid mass of Povoacdo and Nordeste, the oldest of the
island (dated about 4 Mys ago), which also holds the highest peak
(Pico da Vara, 1,103 m.a.s.l.). The island continues towards the
west by a series of connected younger volcanic masses, the
westernmost (Sete Cidades) is still active, with the last eruption
dated in 1652. Climate is temperate oceanic with a mean annual
temperature of 17 °C at sea level. Relative humidity is high and
rainfall is topographically determined, ranging from 1,000 mm/yr
in the coast to well above 3,000 mm)/yr in the highest altitudes of
the volcanic buildings.

Human settlement in the Azores began in the 15th
century. Since then, several activities have altered native
plant communities, namely, replacement of the original vegeta-
tion cover for cereal crops, pasture and forestry and the
introduction of numerous crop, fodder, forest, ornamental and
hedgerow plant species (Martins 1993; Silva 2001; Silva & Smith
2004, 2006).

Data origin

Data on the distribution and dominance of P. undulatum at a
100 x 100 m grain size (Fig. 2 and S1) were obtained from the
Forestry Department Census (Inventario Forestal da Ilha de Sio
Miguel, Direccdo Regional dos Recursos Florestais, Ponta Delgada;
http://www.azores.gov.pt/Portal/pt/entidades/sraf-drrf/). Dominance
accounts for the role of the species in vegetation formations on an
ordinal scale (see below). We assume that this variable is an indirect
proxy for the success of the species in the island; the higher the
dominance, the stronger the competitive displacement of other
species, and therefore the more successful the species has been.

In addition to this, we compiled a comprehensive GIS database
of variables which could potentially determine the distribution of
P. undulatum in Sao Miguel Island (i.e., geomorphology, climate
and human influence). Data were gathered using IDRISI software
and data formats (Clark Labs 2004), and included information on
95 variables for each 100 x 100 m grid cell on the island, from
three categories of maps:
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Fig. 1. Location of the Azores in the northern Atlantic, and of Sdo Miguel island within the archipelago.
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Fig. 2. Current distribution of Pittosporum undulatum in Sao Miguel Island. Medium grey are the forest patches where the species appears as part of formations dominated
by other species. Dark grey are the forest patches where the species is dominant, and Black are those patches where P. undulatum is the unique forest species. See Figure S1

for a colour version.

Geomorphology data. A raster Digital Elevation Model (DEM) was
developed by interpolating the altitude curves of the Digital Chart
developed by the Cartographic Service of the Portuguese Army
(available at http://snig.igeo.pt/). Apart from altitude (ALT), slope
and aspect maps were developed from such a map, and aspect was
reclassified as degrees to the north (i.e., northing) to obtain a
consistent predictor. Additional information about the location of
water courses was also obtained from the same Digital Chart;
presence of water courses (WC) and distance to the nearest water
course (DWC) were used as predictors in the following analyses.

Climate data comes from the CIELO Model (Azevedo et al.
1999), developed to simulate local climate in island environ-
ments. CIELO simulates the distribution of climatic variables in an
island, in a raster GIS parameterised with a DEM, using data from
the synoptic reference of a meteorological station. The grid is
oriented following the direction of the circulation of air masses
through a specific algorithm. The model consists of two main sub-
models: 1) relative to the advective component simulation,
assumes the Foehn effect to reproduce the dynamic and
thermodynamic processes occurring when an air mass moves
over an island, enabling the simulation of air temperature and
humidity, cloudiness and precipitation; and 2) the sub-model
concerns the radiative component as affected by the clouds of
orographic origin, and by the shadow produced by the relief. The
CIELO model has been calibrated and validated to most Azorean
Islands, and is available through CLIMAAT project (CLIMAAT
Interreg_IIIB, MAC 2.3/A3; Azevedo 2003; http://www.climaat.
angra.uac.pt/). In this work, we have used as predictors the
monthly values for precipitation (RAIN), maximum and minimum
temperature (TMAX and TMIN), potential evapotranspiration
(ETO), Solar Radiation (RS), and maximum and minimum relative
humidity (RHMAX and RHMIN) (seven variables x 12 months=84
variables). To avoid problems due to the high collinearity among
climate variables, and also to reduce them to an easy-to-handle
number, we developed a PCA analysis on these variables
(Appendix S2). Four Climate Factors (CF) were extracted,
accounting for 97.1% of total variation in these 84 climate
variables; CF1 (70.1% of total variation) identifies a moisture-
temperature gradient, including RAIN, TMAX, TMIN and RHMIN;
CF2 (17.9%) does for a limiting energy gradient, including winter
and autumn monthly scores for RHO and RS; CF3 (5.49%)
separates hyper-humid areas, including all RHMAX variables;
finally, CF4 (3.60%) holds for a favouring energy gradient, related
to summer and spring ETO and RS monthly values (see Appendix
S2 for further information). These four factors (CF1 to CF4) were
used as predictors in the modelling process.

Thematic data on the spatial location of human constructions,
namely roads, pathways, urban areas, separate buildings, were

obtained from the Digital Chart quoted above; distances to the
nearest road or pathway (DROAD, a surrogate for accessibility), to
the nearest urban area (DURB), to the nearest building (DBUILD,
i.e., constructions found either within or outside urban areas), and
to the nearest cultivated area (DCUL) were calculated, and were
used as a surrogates of human influence on P. undulatum patterns
at 2002 (the date of publication of the Digital Chart). Additional
up-to-date information about the location of Natural Protected
Areas and laurel forest remnants (i.e., Natural Forests) was
obtained from the Environment Department (Direccdo Regional
do Ambiente, Horta; http://www.azores.gov.pt/Portal/pt/enti
dades/sram-dra/).

Data Analysis

The concept and application of niche theory in species
distribution modelling is currently under debate (see, e.g., Mackey
& Lindenmayer 2001; Sober6n & Peterson 2005; Araijo & Guisan
2006; Soberon 2007; Austin 2007; Jiménez-Valverde et al. 2008).
Therefore, rather than directly applying either the most powerful,
the most easy-to-use, or simply the fanciest SDM technique, the
decision on the methodological approach used relied upon a
reflection about the specific purpose of the analysis.

We aim to evaluate the areas under potential threat from
P. undulatum in S3o Miguel (i.e., the areas that could be invaded by
the species). Given that the species has been successful in
dispersing throughout the island (see discussion), we assume
that there are no significant limits to its dispersal at the scale of
the analysis. Therefore, we are interested in modelling the
environmental part of its spatial response, assuming that
the higher the adequacy of each site for the species, the higher
the potential threat to native forest remnants. However, although
P. undulatum has been successful in colonising Sdo Miguel Island,
and soil properties are not a limiting factor for the species in the
island (see discussion), its current distribution is not at equili-
brium with fine-grain environmental conditions. Other factors,
apart from its response to climate variations, have shaped the
pattern of territorial occupancy; land-use practices and manage-
ment (e.g. cattle herding) and dispersal dynamics seem to have
restricted the distribution of the species to the remnants shown in
Fig. 2. Therefore, although our data contains information about
where the sweet pittosporum is able to live, absences are not only
placed where the species is unable to establish populations, but
also in areas that could be suitable, but the species is not currently
present. We thus discard the observed absences for the modelling
procedure, because some of them might not reflect the environ-
mental limitations of the species (see Jiménez-Valverde et al.
2008).



250 J. Hortal et al. / Journal for Nature Conservation 18 (2010) 247-257

It follows that it is advisable to create data on likely absences
that account for the limitations of the species’ environmental
response and its exclusion from certain areas (Ferrier & Watson
1997; Zaniewski et al. 2002; Engler et al. 2004; Lobo et al. 2006,
2010; Vaclavik & Meentemeyer 2009). Here, likely absences are
pseudo-absences (i.e. absence data not coming from surveys)
constrained to areas where it is highly unlikely that the species is
either present or able to establish populations (i.e., environmental
absences sensu Lobo et al. 2010). We used Ecological Niche Factor
Analysis (ENFA; Hirzel et al. 2002), a simple SDM technique, to
generate these likely absences before modelling the potential
distribution of P. undulatum. We performed an ENFA analysis with
Biomapper software (Hirzel et al. 2004), using all climate
variables as predictors and a geometric mean distance algorithm.
The results of such analysis provided a first measure of habitat
suitability, in a O to 100 scale. We considered all grid cells with
habitat suitability scores under 10 as absences (see Engler et al.
2004; Jiménez-Valverde et al. 2007). The total number of grid cells
with likely absences (9,693) was twice as high as the number of
presences (4,420). All these data were used in the subsequent
SDM analyses (N=15,013).

We modelled two different dependent variables, presence/
absence and dominance of the sweet pittosporum. These variables
provide two different probability surfaces accounting for the risk
of invasion by the species. The first one provides a measure of
where the species is able to establish populations (increasing
from O to 1). Dominance describes the pre-eminence of
P. undulatum stands in the forest canopy and understory strata,
and hence could be understood as a proxy of its competitive
power. Original scores for such a variable come from a 4-category
ordinal variable, and were extracted from the abovementioned
Forestry Department Census: O (absence, here restricted to
the likely absences obtained with ENFA); 1 (present, but not
dominant); 2 (dominant in the forest, i.e., providing the main
coverage in the canopy stratum); and 3 (extremely dominant, i.e.,
dominant in both canopy and understory strata). We modelled
dominance as an ordinal multinomial variable, to obtain scores
ranging from negative values to more than 3, and assumed that
the higher the score of the modelled value, the greater is the
competitive power of the species, and thus its capacity of
displacing endemic plant formations.

We used General Linear Models (GLM; McCullagh & Nelder
1989) for both modelling processes, as the ability of these
methods to capture species responses to environmental gradients
is rooted in a strong theoretical background (Austin et al. 1990;
Austin 2002; Maes et al. 2010). Presence/absence data were
modelled using logistic regression (logit regression with logarith-
mic link function), and common multinomial regression was used
to model the dominance (assuming normal distribution for the
variable and identity as the link function with the predictors). The
linear and quadratic equations were evaluated for all continuous
predictors. A mixed forward/backward process was used, where
variables were entered one by one in the model in a forward
regression, and a backward regression is used to eliminate non-
significant terms after each inclusion (see e.g. Hortal et al. 2001).
All calculations were made using STATISTICA (StatSoft Inc 2003).
Accuracy in presence/absence model predictions was assessed
using a jackknife procedure, a technique which yields relatively
unbiased estimates of model performance (Olden et al. 2002).
Here, an observation is excluded and the model is parameterised
again with the remaining n-1 observations to obtain a predicted
probability for the excluded observation. This procedure is
repeated n times (one per observation), and receiver operating
characteristics (ROC) technique is applied, using the area under
the curve (AUC) as a measure of overall accuracy (Fielding & Bell
1997; Pearce & Ferrier 2000). The evaluation of SDM results using

AUC presents a number of problems (see Lobo et al. 2008), so we
also calculated sensitivity and specificity (presences correctly
predicted as presences and absences correctly predicted as
absences, respectively) using the new jackknife probabilities; as
these two accuracy measures depend on a threshold value, above
which probabilities are considered as presences, we applied the
threshold which minimises the difference between sensitivity and
specificity (Jiménez-Valverde & Lobo 2006; see also Liu et al. 2005,
and Thomaes et al. 2008 for an example of this validation protocol).
All jackknife computations were performed in R (R Development
Core Team 2004).

The dominance model was validated by partitioning the
data into 20 data sets, training the model with 19 sets and
validating in the remaining set, one in turn. Predictive error (PE)
was computed as:

__ ABS[(obs+1)-(pred +1)]

PE obs+1

x 100

were obs are the observed scores, and pred are model predictions.
Mean Predictive Error (MPE) was averaged among the 20 splits.
The Predictive Power (PP) of the model would be an estimate of its
accuracy when extrapolated outside of the bounds of the data
used, and is just the inverse of MPE (i.e., PP=100 - MPE; see
Hortal et al. 2001).

Results

Climate, altitude and some human effects appear to be
affecting both the presence and dominance of P. undulatum
(Table 1). Interestingly, CF1, altitude and the distances to urban
areas and buildings appear as the most important determinants
in both cases. Explained deviance was consistently higher for
presence than for dominance; whereas in the former the scores of
the abovementioned variables were higher than 75%, except for
DBUILD (53%), their explanatory capacity decreased to 42%, 45%,
32% and 27%, respectively in the latter. CF4 and slope presented
much smaller effects, around 6% and 5% for presence, and 6% and
3.5% for dominance, respectively (Table 1). Other variables, such
as DWC, also presented minor significant effects, although some
of them were also included in the final predictive models (see
below).

The model for presences includes CF1, CF2, CF3, CF4, ALT,
ASPECT, SLOPE and DWC, whereas the model for dominances
includes CF1, CF2, CF4, ASPECT, SLOPE and DWC. Explained
deviance was much higher for the presence than for the
dominance model (88.7% vs. 58.8%). The former also showed
higher predictive power according to the results of the jackknife
procedure; the values of sensitivity and specificity of 97% and
AUC=0.99 indicate great discriminatory power (following Swets
1988). The dominance model showed a MPE of 30.81% and a PP of
69.19%. Both models showed higher explanatory power than
explained variability, evidencing the robustness of the variables
used.

The areas predicted to be either suitable or unsuitable for
Pittosporum undulatum in Sio Miguel are of lower altitude,
precipitations and relative humidity, and of higher temperatures,
with more energy inputs during spring and summer (Fig. 3 and
Appendix S3). In general, this species is not able to colonise areas
over 650 m.a.s.l., with minimum monthly temperatures below
6°C. When the scores of the models are extrapolated, several
natural areas appear to be potentially under threat; the sweet
pittosporum could potentially invade territories dominated by
native vegetation that are currently under some protection
status (e.g. Lagoa do Fogo and Pico da Vara), although predicted
dominance scores are low for these areas (see Fig. 4).
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Table 1

GLM results for all explanatory variables included in the analysis, with their respective codes (see text), and the models used for prediction. Deviance and Change in
Deviance were calculated through the comparison with a null model (with no explanatory variables) of sweet pittosporum presence (left) and dominance (right). The linear
or quadratic functions of each variable were selected when they produced a Change in Deviance significant at a 5% level. According to F statistics, all explored functions are
significant at a 0.05 level (with 10356 d.f., F=2.999 provides significance at 0.05 level). Best subset models are the ones used for predictions of pittosporum habitat
adequacy; the model for presences includes CF1, CF2, CF3, CF4, ALT, ASPECT, SLOPE and DWC, whereas the model for dominances includes CF1, CF2, CF4, ASPECT, SLOPE
and DWC. Dev: Deviance; Ch. Dev: Change in Deviance; % Dev: Percentage of Deviance explained (i.e., explanatory capacity of the model). Sens: sensitivity (presences
correctly predicted); Spec: specificity (absences correctly predicted); AUC, area under the ROC curve. EPM and PP are, respectively, the Mean Prediction Error and the

Predictive Power of these functions.

Presence Model d.f. Dev Ch. Dev. F % Dev Dominance Model d.f. Dev Ch. Dev. F % Dev
Null 10357 14128.2 null model 10357 237401

CF1 10356 3244.2 10884.0 34743.6 77.04 CF1 + CF12 10355 13878.7 9861.4 22075.8 41.54
CF2 10356 13729.4 398.8 300.8 2.82 CF2 10356 23379.8 360.2 478.7 1.52
CF3 10356 14078.6 49.6 36.5 0.35 CF3 10356 23719.5 20.6 27.0 0.09
CF4 10356 132423 886.0 692.9 6.27 CF4 + CF4? 10355 223833 1356.8 1883.2 5.72
ALT 10356 3391.3 10736.9 32786.7 76.00 ALT + ALT? 10355 13053.8 10686.2 25434.0 45.01
SLOPE 10356 13376.0 752.2 582.4 5.32 SLOPE 10356 22911.7 828.4 11233 3.49
ASPECT 10356 13590.4 537.8 409.8 3.81 ASPECT 10356 23214.7 5254 703.1 2.21
WC 10356 14107.5 20.7 15.2 0.15 WwWC 10356 23712.4 27.7 36.2 0.12
DWC 10356 13688.6 439.7 332.6 3.11 DWC 10356 23638.3 101.8 133.8 0.43
DROAD 10356 13977.6 150.6 111.6 1.07 DROAD 10356 23552.5 187.5 2474 0.79
DURB+DURB? 10355 3135.2 10993.0 36307.7 77.81 DURB + DURB? 10355 16037.2 7702.9 14923.0 32.45
DBUILD 10356 6662.1 7466.1 11605.8 52.85 DBUILD + DBUILD? 10355 17250.5 6489.6 11688.1 27.34
DCUL 10356 13770.0 358.2 269.4 2.54 DCUL 10356 23464.8 275.3 364.5 1.16
Best subset 10349 1598.726 12529.5 81107 88.68 Best subset 10351 5075.1 7241.2 14768.9 58.79

Sens=97% Spec=97% AUC=0.99 MPE=30.81 PP=69.19
Discussion & Peterson 2005) their utility for such task is limited

By relating the information from a forestry census with GIS
environmental data, we have been able to highlight the extent of
the threat posed by the invasion of sweet pittosporum for most of
the remnants of natural vegetation in Sao Miguel. According to our
results, this invader could be able to establish populations in
almost all the areas of the island below 700 m.a.s.l., having the
possibility of becoming the dominant and/or the unique forest
species in many of these places. These areas are the most affected
by human activity, at present and also historically, through the
transformation of the natural vegetation into agricultural or
forestry land. Given such impact, the potential conservation threat
of this invader could seem minimal, because its future spread will
happen in areas that have already been highly modified. However,
its extreme ability to outcompete the Azorean native forest species
makes it also one of the most important (if not the most
important) threat for the species inhabiting the very last remnants
of the original low-altitude native forests that are now under
protection. A dramatic example of this process is Graciosa Island
(also in the Azores), where sweet pittosporum is taking over the
very last remains of Morella faya-dominated forest. The extent of
the threats imposed by such dramatic replacement of the native
forest is evidenced by the role played by this invader in the decline
of the populations of the only Azorean endemic bird species, the
Azorean bullfinch (Pridlo, Phyrrula murina Godman) (Ramos 1996).
This species is not able to feed on P. undulatum forests because
their high density and dense cover limit the growth of the ground
and herbaceous plants the bullfinch feeds from (Ramos 1995).

Using species distribution models to assess the level of threat of
invasion

In spite of their wide development and usage in the last two
decades, species distribution models present several drawbacks
that impose some limits to their use for practical studies.
Although they are commonly understood as a tool for the
modelling of the environmental niches of species (e.g., Sober6n

(Jiménez-Valverde et al. 2008; Sober6n & Nakamura 2009). On
the one hand, most species distributions are not in equilibrium
with environment (e.g., Araijo & Pearson 2005), so bioclimate
envelopes might not be able to recover the whole potential
response of species to environmental gradients, in spite of their
goodness of fit (Jiménez-Valverde et al. 2008). Rather, other
factors are shaping the spatial responses of species, and should be
taken into account to model such responses (Kearney 2006;
Sober6n 2007; Lobo 2008; Jiménez-Valverde et al. 2008; Sober6n
& Nakamura 2009). This is a key question in the case of invaders,
as they may not have had time to occupy all suitable places in the
new territory (Peterson 2005), hence providing additional
uncertainty to the analyses on their potential distributions (e.g.,
Hartley et al. 2006). On the other hand, the available data on the
distribution of species is often not good enough to ensure the
reliability of the results of the modelling process, being plagued
by spatial biases, hence providing incomplete descriptions of
the spatial and environmental responses of species (Lobo et al.
2007; Lobo 2008; Hortal et al. 2007, 2008). This can be especially
true in the case of invaders, because often only occurrence
data from the invaded area are used in the modelling process
(Mau-Crimmins et al. 2006).

Given these drawbacks, any implementation of species
distribution models should be based on a proper acknowl-
edgement of their limitations for the question at hand, and the
development of a protocol adequate to solve such a question with
the available information. In our case, data quality is not a
concern, because we use a complete inventory of the presence and
dominance of the sweet pittosporum in Sao Miguel to model its
distribution. The likely lack of equilibrium with environment of
the distribution of the species is partly acknowledged by our
choice of pseudoabsence data well outside of the environmental
domain currently occupied by the species, as recommended
by Jiménez-Valverde et al. (2008), Lobo et al. (2010), and Vaclavik
and Meentemeyer (2009) for invasive species. The habitat
suitability description obtained here would be shown to be an
underestimation if the species is able to colonise in the future the
remaining high-altitude areas that are currently free from
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Fig. 3. Relationships between the suitability for the establishment of Pittosporum undulatum, as predicted by our models (see Table 1), and the three most relevant
environmental predictors: (a) altitude; and the Climatic Factors; (b) CF1, a moisture-temperature gradient (increasingly wetter and colder conditions in the positive
values); and (c) CF4, describing the energy input during the growing season (increasing evapotranspiration and solar radiation during spring and summer in the positive
values) (see Appendix S2). Suitability varies from 0 (completely unsuitable) to 1 (perfectly suitable). Due to the sheer number of data points, the scatterplots show their

density and the histograms their frequency.

invasion. However, given the time since P. undulatum established
in the island and its rate of invasion (see below), we believe that
this is quite unlikely, and hence the eventual changes in our
habitat suitability maps would be minimal. In fact, disequilibrium
is unlikely to be happening in our case as (i) dispersal capacity of
P. undulatum within the island is virtually unlimited thanks to
blackbirds (see below), and (ii) the species has not been sighted
above 800 m.a.s.l. neither on any island of the Azores (Schaefer
2003) nor at the Canary Islands (Weber 2003). Also, the hump-
shaped relationship of dominance with the first climatic factor
and altitude (Table 1) evidences that the climatic optimum for the

species is presently within the range of conditions found in the
island (see also Fig. 3), hence providing indirect support to the
idea of the models being developed with an adequate description
of the pittosporum’s environmental response.

Determinants of current distribution and abundance of sweet
pittosporum

The sweet pittosporum in Sdo Miguel is limited by the most
important climatic gradient on the island. The steep topography
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Fig. 4. Predictive maps of Pittosporum undulatum potential distribution (up) and potential dominance (down) in Sdo Miguel Island. Dark grey are maximum scores (1 for
presence and 3 or more for dominance), and white are minimums (0 for presence and O or less for dominance). The current location of Natural Protected Areas (outlined)

and the distribution of the remaining natural forests (diagonal lines) are also shown.

causes a striking altitudinal gradient (described by our first
climatic factor), where small increases in elevation are followed
by important declines in temperature and increases in precipita-
tion and humidity. P. undulatum seems unable to live in the colder
and much more humid altitudes of the old volcanic buildings of
Sete Cidades in the west, Fogo in the centre of the island, and
Furnas and Pico da Vara in the east, and the high altitudes of the
Achadas that connect the latter two. According to previous results
(Silva 2001; Silva & Smith 2006), the invasion by P. undulatum
mainly affects plant communities from 100 up to 600 m of
altitude, which is consistent with the earlier observations of
Sjogren (1973). Therefore, it can be assumed that its distribution
is limited by environmental factors that vary with altitude,
namely low temperatures and increased exposure to the prevail-
ing winds at higher altitudes (Dias 1996; Goodland & Healey
1996). In accordance with this, in situ observations showed that
fruit production decreases drastically with altitude, particularly
above 450 m (L.S., unpublished data).

The optimum conditions for the species, however, are not
placed in the warmest and less humid areas of the island. Rather,
its climatic optimum seems to be located at mid-altitudes, as
evidenced by the hump-shaped relationship identified by the
dominance model (see also Figs. 3a and 3b). In fact, P. undulatum
is an invader in tropical and subtropical mountain forests, in
warm temperate regions of the Northern Hemisphere, in many
islands of the Atlantic and Pacific oceans, and in South Africa
(Gleadow & Ashton 1981; Manders & Richardson 1992; Goodland
& Healey 1996). Indeed, P. undulatum has also invaded plant
communities in its native country, establishing successful popu-
lations in a wide range of habitats of mild, humid and sub-humid

climates in the south of Australia (Gleadow & Ashton 1981; Rose
1997a; Rose & Fairweather 1997). It is thus not surprising that
P. undulatum has become so widespread in the Azores, a typical
oceanic archipelago composed of islands with fairly mild and
humid climate.

It is now widely accepted that the majority of biological
invasions are deliberately and/or accidentally related to human
activity, and the invasion process is usually initiated in habitats
transformed by human activities (e.g., Cronk & Fuller 1995;
Goodland & Healey 1996; Rose & Fairweather 1997; Silva & Smith
2004). Our results evidence a high spatial relationship with the
distance to inhabited areas, the species being most dominant at
intermediate distances to buildings and/or urban areas. This could
be either the reflection of a true preference for moderately
humanised environments within the island, or just a spurious
relation due to the spatial location of the first introductions of the
species. On the one hand, the land placed near urban areas in Sdao
Miguel has been typically used for cultivations of vegetables and
corn for domestic consumption. Thus, these areas were regularly
cleared, preventing the development of P. undulatum forests. On
the other hand, the sweet pittosporum was first used during the
19" Century to create living fences around fruit orchards (mainly
orange trees) to protect them from strong winds. During the
implantation of fruit production for the exportation to Europe and
North America, the areas devoted to orchards were placed
relatively near (but not next) to urban nuclei. These exploitations
(called ‘quintas’) typically consisted of a large house surrounded
by orchards, which could be a cause for the linear correlation with
the distance to buildings in the presence model. Whether a direct
or indirect by-product of the human use of the islands (or both),
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currently sweet pittosporum shows a clear association with
disturbed shrub and forest environments in all Azorean islands.

The relatively small area of most Azorean islands combined with
a significant alteration of habitats and favourable climatic condi-
tions might have also been a decisive factor in the rapid and
successful P. undulatum invasion (Goodland & Healey 1996; Rose &
Fairweather 1997; Sanford et al. 2003). In the same way as other
invaders take advantage of ecosystem alteration and disturbance
(Ogden et al. 2003; Rouget et al. 2003; Shiferaw et al. 2004; Lake &
Leishman 2004), the invasion by P. undulatum in the Azores may
have been facilitated by disturbance of the native woody vegetation,
especially where the cleared areas were abandoned to colonisation
by introduced species. During the first phase of human settlement
in the Azores, the felling of native woody vegetation for timber and
fuel may have opened gaps suitable for invasion by P. undulatum.
Either this activity or its wide usage for living fences may have
provided the initial impetus for the rapid spread of P.undulatum.
This process was later enhanced by the clearance of native
vegetation for the installation of agricultural crops. When these
cultivations were abandoned, the secondary vegetation has always
become dominated by P. undulatum. Natural disturbance may also
have contributed to this process, since storms and landslides are
common events in the islands.

Although disturbance can enhance the invasion process, non-
indigenous species are also able to invade intact habitats in many
regions of the world (Sanford et al. 2003), including the Azores
(Silva & Smith 2004). Several areas of native vegetation have been
invaded by P. undulatum at the archipelago, particularly at higher
elevations and in very steep terrain. Given that most of these areas
have been safe from human intervention due to their inaccessibility,
the extreme success of this species can not be explained by human
disturbance alone. Dispersal is a crucial stage of the invasion
process (Hastings et al. 2005; Facon et al. 2006). Sweet pittosporum
found little obstacles to dispersal, since both pollinators and seed
dispersers were also present on the time of its introduction. In fact,
current honey production at the Azores is based on Apis mellifera
and P. undulatum flowers, and beehives are placed near wooded
areas where P. undulatum is common. Also, the dispersal of the
invaders with highly nutritive seeds is widely facilitated by
frugivorous species (Buckley et al. 2006). Similar to other regions
of the world, in the Azores P. undulatum seeds are dispersed by a
local subspecies of blackbird, Turdus merula azorensis (Goodland &
Healey 1996; Rose 1997a). Germination essays showed that
P. undulatum seeds kept their viability after passage through the
digestive tract of the bird (L.S., unpublished data).

It should also be stressed that sweet pittosporum occurs in a
wide variety of habitats, and soil properties do not seem to be a
limiting factor for its establishment, at least at the Azores. In
sheltered gullies P. undulatum may occur on skeletal soils, and on
some coastal sites it appears on bluffs and cliffs within range of
severe salt spray or on relatively dry hind dunes (Gleadow &
Ashton 1981). At the Azores, P. undulatum is frequent in coastal
areas and where Morella faya is recolonising, with the exception of
areas that are extremely exposed, affected by salt spray, or subject
to hydric stress (Dias 1996; H. Schaefer pers. comm.). In fact, it
occurs on very shallow soils in coastal scrub and lava flows,
especially where stone walls built to protect orchards and
vineyards provide shelter from direct salt spray and wind. The
only coastal areas free of its invasion to date are those of intense
wind exposure, which at the Azores are dominated by Erica
azorica or Arundo donax. P. undulatum is also commonly found
forming mixed stands with other non-indigenous trees (Eucalyp-
tus and Acacia), where it ranges from understorey to dominant
species. This reflects its association with similar species in its
native range where it is one of the most abundant understorey
species in different types of Eucalyptus forests. P. undulatum

occurs sporadically in notophyllous vine forests, being more
frequent on their margins in tall open forests (Gleadow & Ashton
1981; Goodland & Healey 1996). It is also present in micro-
phyllous vine forests, especially those in dryer gullies, as well as
in wet and dry sclerophyllous forests. This is in agreement with
the types of vegetation invaded in the Azores, namely the
endemic scrub and the laurel forest, where the main species are
sclerophyllous and microphyllous.

Controlling a threat to natural vegetation

The risk assessment of invasive species for the Pacific Islands
catalogues Pittosporum undulatum as being a ‘high risk’ invader,
being a threat to mesic forests (US Forest Service 2007-2008).
Such status could easily be extrapolated to the Azores, where it is
one of the plants with the highest impact on the vegetation
(Sjogren 1973). In this archipelago, sweet pittosporum is already
very frequent and abundant in Morella faya scrub and in coastal
woods, even on the remote coasts of Corvo, Flores, Sdo Jorge,
Graciosa and Pico (Dias 1996; Schaefer 2003). When this invasive
species establishes, it is often able to overgrow the native
vegetation by shading the indigenous species, forming pure
stands particularly in sheltered areas (Gleadow & Ashton 1981;
Dias 1996; Goodland & Healey 1996; Rose & Fairweather 1997;
Silva 2001). According to a recent evaluation of the Top 100
invasive species in Macaronesia, sweet pittosporum is considered
invasive also in Madeira and the Canary islands, and ranked 8th in
a total of 195 evaluated species (Silva et al. 2008). In the Azores,
M. faya has been largely replaced by P. undulatum (Palhinha et al.
1942; Palhinha 1944; Machado 1946; Ricardo et al. 1977;
Schaefer 2003), altering the natural transition between the native
plant communities common between 300 and 600 m of altitude
(Sjogren 1973).

It is important to stress that the results of our study are maps of
the areas under threat of invasion within Sdo Miguel according to
the environmental preferences of the invader, with some associated
uncertainty. Many other factors determine the spread of the species
and thus the areas potentially under threat, such as land use
(agriculture, forestry, conservation), the implementation (or rather
the absence) of conservation measures, and the management
options directed towards the areas already invaded by sweet
pittosporum in the Azores. In fact, sweet pittosporum is already the
dominant woody species in the Azores. From a total woodland
cover of 62,982 ha in 2007, 33% was covered by sweet pittosporum,
and 31% of natural vegetation (SRAF 2007). From the remaining
area, only 18% is occupied by the Japanese cedar Cryptomeria
japonica, the backbone of the local industrial wood segment. Less
important are eucalyptus (6%) and other species (12%) (SRAF 2007).
The importance and virulence of this threat is such that the
implementation of management actions to stop sweet pittosporum
spread in the Azores, giving a sustainable use to the vast areas
already used by this aggressive invader, should be a priority for both
the Azorean regional government and the European Commission,
within the Natura 2000 conservation scheme.

Many control measures have been evaluated and used against
this invader (Rose 1997b; Silva et al. 1999). Management will
demand coordination at the regional level, with selective control,
restoration of the invaded communities, and economic utilisation
where advisable (Goodland & Healey 1996). Since this species is
widely used for hedgerows in the Azores, and is presently sold at
plant nurseries, its future control will be dependent on the
availability of native plant species to progressively replace it,
namely M. faya that was widely used for this purpose in the past.
However, in order to sustainably replace P. undulatum an
integrated strategy should be followed, including replacement of
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hedgerows, removal at priority sites for conservation and progres-
sive substitution in mixed forest. Meanwhile, the removal of woody
plant invasive alien species from affected areas is a continuous and
intensive effort, with significant and recurring costs derived from
high landfill fees and limited availability of space. Finding
alternatives to generate an economic return for the resulting
biomass would greatly reduce management and control costs, thus
ensuring the continuity of such effort. Composting is not a viable
option within the general context of the Azores, where there is a
lack of significant demand for such service. The only exception is
Sdao Miguel Island, where P. undulatum foliage is used to produce
compost for pineapple plantations, although at a relatively small
scale. Rather, sweet pittosporum biomass could be used as a
renewable source of biofuel and/or an alternative food for cattle in
the winter. We believe that energetic valorisation can constitute a
viable alternative for the results of clearing sweet pittosporum
stands. A combination of the generalisation of this use for wood
material and of leaves and young branches as winter food
supplements for cattle, might eventually allow the progressive
replacement of P. undulatum by Macaronesian species (e.g. M. faya,
Persea indica), with a positive impact on local biodiversity.

Thus, as a global strategy for the sustainable management of
P. undulatum invasion in the Azores, we suggest: (i) the
implementation of regional legislation declaring it as a noxious
weed and forbidding its commercialisation by plant nurseries;
(ii) its progressive replacement by native and other non-invasive
species in hedgerows; (iii) the control of P. undulatum at priority
conservation sites below 650 m.a.s.l., accompanied by planting of
native species; and (iv) a phased diversification of the Azorean
forestry resources, beginning with the removal of P. undulatum
and other woody plant invaders, using the biomass for energy
production to at least partly cost control measures, and its
progressive replacement by native and non-invasive woody
species for timber production and other uses. This would allow
control of P. undulatum while stimulating the diversification of
forestry resources, eventually contributing to an increase in the
area dedicated to sustainable production forest in the Azores.

In addition to these eradication and control efforts, a fifth
program for the continuous monitoring of the areas under risk
that have not been invaded yet should be implemented. Also, and
given the uncertainty associated to our results, (vi) the protected
areas predicted to be unsuitable should also be monitored. The
low probability of invasion may lead to specific monitoring
programs in these areas being discarded, especially above 650
m.a.s.l. or where minimum temperatures remain below 6°C
during several months throughout the year (see Fig. 3 and
Appendix S3). Rather, we recommend that in these areas the
sweet pittosporum is only included in general assessments of the
conservation status of the native forests.

To summarise, our results show that P. undulatum is a major
problem for the management and preservation of natural habitats
in the Azores, similar to other areas where it has been introduced.
Here we suggest that the decision on where and how to develop
control activities needs to be based on both the invasion threat
maps generated here (based in species distribution modelling),
but also on good empirical data such as the information already
available on the Azorean Biodiversity Database (available at
http://www.azoresbioportal.angra.uac.pt). Although it is true that
the predictions show that the areas under threat of invasion
occupy most of the island, such information allows users to deter-
mine those locations where the remaining native communities
are in need of specific conservation efforts to minimise the impact
of this invader. Nevertheless, our work shows how species
distribution models can be implemented within a proper risk
assessment framework, providing useful information for the
control of invasive species at the local scale.
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ELECTRONIC SUPPLEMENTARY MATERIAL

Figure S1.- Current distribution of Pittosporum undulatum in Sao Miguel Island. Colours are
equivalent to the greyscale in Figure 2: blue - forest patches where the species appears as part
of formations dominated by other species; green - forest patches where the species is

dominant; and red - patches where P. undulatum is the unique forest species.




Appendix S2.- Results of the PCA analysis carried out with the 84 climate variables.

Table S2.1- Results from the PCA analysis. CF1 to 4 are the resulting climate factors. Variable
codes as in text; scores are for monthly values (numbers from 01 to 12 indicate the month

from January to December).

CF1 CF2 CF3 CF4
Eigenvalue 58.89 15.02 4.61 3.03
% Total 70.11 17.88 5.49 3.60
Cumulative Eigenvalue 58.89 73.92 78.53 81.55
Cumulative % 70.11 88.00 93.49 97.09
Factor loadings CF1 CF2 CF3 CF4
RAINO1 0.916 -0.102 -0.146 -0.076
RAINO2 0.913 -0.105 -0.147 -0.074
RAINO3 0.928 -0.085 -0.149 -0.083
RAINO4 0.932 -0.069 -0.151 -0.086
RAINO5 0.936 -0.068 -0.151 -0.086
RAINO6 0.934 -0.054 -0.154 -0.088
RAINO7 0.927 -0.053 -0.161 -0.094
RAINO8 0.935 -0.083 -0.165 -0.102
RAINO9 0.939 -0.086 -0.157 -0.096
RAIN10 0.935 -0.084 -0.153 -0.091
RAIN11 0.929 -0.113 -0.153 -0.097
RAIN12 0.921 -0.111 -0.150 -0.085
TMAXO01 -0.908 0.113 0.359 0.115
TMAX02 -0.910 0.111 0.357 0.114
TMAXO03 -0.907 0.119 0.362 0.114
TMAX04 -0.904 0.133 0.367 0.115
TMAXO05 -0.900 0.130 0.375 0.119
TMAXO06 -0.894 0.142 0.383 0.120
TMAXO07 -0.886 0.153 0.391 0.122
TMAXO08 -0.891 0.140 0.388 0.122
TMAXO09 -0.896 0.132 0.384 0.118
TMAX10 -0.895 0.139 0.383 0.118
TMAX11 -0.904 0.124 0.367 0.112
TMAX12 -0.908 0.111 0.361 0.112
TMINO1 -0.916 0.112 0.340 0.114
TMINO2 -0.917 0.110 0.339 0.112
TMINO3 -0.914 0.116 0.343 0.113
TMINO4 -0.912 0.128 0.347 0.114
TMINO5 -0.910 0.126 0.352 0.117
TMINO6 -0.904 0.137 0.361 0.117
TMINO7 -0.899 0.146 0.369 0.121
TMINO8 -0.901 0.136 0.370 0.119
TMINO9 -0.905 0.129 0.365 0.116
TMIN10 -0.906 0.134 0.361 0.116
TMIN11 -0.912 0.122 0.349 0.111
TMIN12 -0.915 0.110 0.343 0.111

(Cont.)



Table S2.1 (Cont.)

Factor loadings CF1 CF2 CF3 CF4

ETO001 -0.400 0.838 0.341 0.047
ET002 -0.396 0.832 0.316 0.186
ET003 -0.351 0.780 0.279 0.415
ET004 -0.390 0.629 0.281 0.597
ETO005 -0.399 0.447 0.295 0.738
ETO006 -0.411 0.350 0.288 0.782
ETO007 -0.381 0.412 0.265 0.778
ETO008 -0.293 0.609 0.197 0.705
ET009 -0.273 0.773 0.195 0.526
ETO10 -0.306 0.873 0.241 0.265
ETO11 -0.351 0.881 0.279 0.071

ETO012 -0.403 0.842 0.333 0.005
RS01 0.040 0.989 -0.006 0.123
RS02 0.034 0.961 0.001 0.265
RS03 0.025 0.870 -0.011 0.484
RS04 -0.015 0.700 0.024 0.705
RS05 -0.071 0.479 0.063 0.868
RS06 -0.100 0.347 0.064 0.922
RS07 -0.115 0.413 0.087 0.891
RS08 -0.060 0.629 0.047 0.768
RS09 -0.012 0.813 0.019 0.571

RS10 0.021 0.938 0.014 0.332
RS11 0.035 0.983 -0.013 0.165
RS12 0.041 0.993 -0.006 0.083
RHMAXO01 0.519 -0.068 -0.833 -0.112
RHMAX02 0.505 -0.065 -0.839 -0.103
RHMAXO03 0.528 -0.100 -0.831 -0.108
RHMAX04 0.498 -0.160 -0.839 -0.101
RHMAXO05 0.484 -0.142 -0.850 -0.118
RHMAXO06 0.477 -0.176 -0.847 -0.111
RHMAXO07 0.438 -0.206 -0.846 -0.111
RHMAXO08 0.467 -0.153 -0.855 -0.113
RHMAXO09 0.514 -0.150 -0.834 -0.110
RHMAX10 0.501 -0.168 -0.835 -0.108
RHMAX11 0.541 -0.130 -0.813 -0.097
RHMAX12 0.535 -0.070 -0.824 -0.104
RHMINO1 0.789 -0.120 -0.541 -0.138
RHMINO2 0.811 -0.114 -0.516 -0.134
RHMINO3 0.792 -0.137 -0.539 -0.136
RHMINO4 0.824 -0.164 -0.491 -0.137
RHMINO5 0.804 -0.160 -0.515 -0.145
RHMINO6 0.803 -0.183 -0.508 -0.145
RHMINO7 0.816 -0.194 -0.478 -0.147
RHMINO8 0.832 -0.170 -0.470 -0.145
RHMINO9 0.829 -0.159 -0.485 -0.140
RHMIN10 0.820 -0.171 -0.493 -0.140
RHMIN11 0.806 -0.147 -0.520 -0.130
RHMIN12 0.804 -0.114 -0.527 -0.130
Expl.Var 42.54 14.67 15.91 8.24

Prp.Totl 0.506 0.175 0.189 0.098




Figure S2.2-Spatial distribution of the scores for the four Climate Factors.
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CF4




Appendix S3.- Geomorphological and climatic differences between the areas predicted to be suitable or unsuitable for the invasion of

Pittosporum undulatum according to our analyses.

Table S3.1- Results of the Mann-Whitney U tests comparing the geomorphological and climatic conditions of the areas predicted to be suitable
or unsuitable for Pittosporum undulatum in our analyses. Variable codes as in text; scores are for monthly values (numbers from 01 to 12

indicate the month from January to December). Aspect is calculated as northing (i.e., degrees from the North).

Mann-Whitney U Results Predicted suitable Predicted unsuitable
U Z Adj. p-level Mean Median  Min Max Lower Upper  Std.Dev. Mean Median  Min Max Lower Upper  Std.Dev.
Altitude 18731 -32.91 <0.0001 246.7 240.0 1.0 650.0 168.0 320.0 120.8 601.6 590.0 420.0 788.0 560.0 632.0 67.1
Aspect 1588242 1.22 0.224 57.5 49.0 0.0 180.0 22.6 90.0 44.6 52.4 47.9 0.0 180.0 25.6 81.5 36.5
Slope 1526123 2.47 0.014 12.6 10.0 0.0 64.1 6.0 16.5 9.6 10.8 9.0 0.0 36.4 6.1 12.9 7.2
CF1 36373 -32.55 <0.0001 -0.6 -0.7 -1.8 1.6 -1.0 -0.2 0.6 13 13 0.3 2.3 1.0 1.6 0.4
CF2 1363130 5.76 <0.0001 -0.4 -0.5 -1.8 2.8 -1.1 0.0 0.8 -0.6 -0.9 -1.8 2.1 -1.3 -0.1 0.9
CF3 825424 -16.62  <0.0001 -0.5 -0.7 -1.8 31 -1.0 -0.2 0.7 -0.1 -0.2 -0.8 14 -0.4 0.1 0.3
CF4 1078655 11.50 <0.0001 -0.1 0.2 -2.8 1.6 -0.8 0.7 1.0 -0.7 -0.7 -2.6 1.5 -1.6 0.1 1.0
CF5 882062 15.47 <0.0001 0.0 -0.1 -2.7 4.1 -0.7 0.5 1.1 -0.8 -1.0 -2.6 1.6 -1.5 -0.2 0.9
RAIN_01 215461.5 -28.94 <0.0001 178.2 163.4 118.1 360.6 128.4 219.3 55.6 284.3 284.4 2143 368.7 264.2 301.1 29.8
RAIN_02 194680.5 -29.36 <0.0001 136.5 125.4 90.1 275.8 98.0 167.9 42.8 2233 2238 163.1 280.1 207.7 240.9 25.5
RAIN_03 153905.0 -30.18 <0.0001 139.2 127.4 96.3 263.9 102.8 171.5 40.4 227.4 227.3 166.1 280.3 209.3 247.5 25.2
RAIN_04 103573.0 -31.20 <0.0001 103.2 93.1 72.4 196.4 77.1 126.8 30.1 173.9 173.8 131.9 203.9 164.7 186.8 15.5
RAIN_05 124224.0 -30.79  <0.0001 87.9 77.8 62.6 168.5 65.8 108.8 25.2 1447 143.0 1145 1764 132.0 158.6 15.6
RAIN_06 96885.5 -31.34  <0.0001 55.1 48.2 39.1 1054 40.8 69.4 16.6 94.9 96.3 721 1114 86.6 103.7 9.8
RAIN_07 98714.0 -31.31  <0.0001 42.5 36.6 29.6  85.0 30.6 54.5 13.7 75.8 78.1 569 89.8 68.3 82.9 8.1
RAIN_08 96492.5 -31.35  <0.0001 65.0 57 450 131.0 46.9 82.7 20.4 1146  118.0 87.0 136.7 102.6 125.4 12.5
RAIN_09 85517.5 -31.57 <0.0001 139.8 124 94.4 2742 100.0 178.7 443 246.3 250.4 184.2 303.5 222.8 268.3 26.4
RAIN_10 93689.5 -31.40 <0.0001 147.9 131.6 99.4 295.3 106.1 187.1 47.4 260.3 259.5 1975 3151 242.2 282.3 25.9
RAIN_11 97390.5 -31.32 <0.0001 193.8 176.9 1289 368.7 140.9 240.4 59.5 334.4 335.9 256.6 398.6 314.8 360.1 31.1

RAIN_12 171745.0 -29.82 <0.0001 179.8 166 118.3 357.4 129.5 221.6 55.7 295.0 2953 220.8 371.2 273.8 316.7 31.2




Table S3.1 (Cont.)

Mann-Whitney U Results

Predicted suitable

Predicted unsuitable

u Z Adj. p-level Mean Median  Min Max Lower Upper Std.Dev. Mean Median Min Max Lower Upper Std.Dev.
TMAX_01 20481.00 32.88 <0.0001 15.0 15.1 12.3 17.6 14.4 15.7 1.0 12.3 12.5 11.0 13.4 12.0 12.7 0.5
TMAX_02 19449.00 32.90 <0.0001 14.7 14.8 11.8 17.3 14.0 15.5 1.0 12.0 12.0 10.7 13.2 11.6 12.3 0.5
TMAX_03 18556.00 32.92 <0.0001 15.1 15.2 12.4 17.8 14.4 15.9 1.0 12.4 12.5 11.0 13.6 12.1 12.8 0.5
TMAX_04 18115.50 32.93 <0.0001 15.6 15.7 12.8 18.1 14.9 16.3 1.0 12.9 13.0 11.6 13.9 12.5 13.2 0.5
TMAX_05 19476.00 32.91 <0.0001 17.4 17.4 14.5 19.9 16.7 18.1 1.0 14.7 14.8 13.4 15.8 14.4 15.0 0.5
TMAX_06 16307.00 32.97 <0.0001 19.5 19.6 16.9 22.0 18.8 20.3 1.0 16.9 17.0 15.7 17.8 16.5 17.2 0.5
TMAX_07 17254.50 32.95 <0.0001 22.1 22.2 19.4 24.6 21.4 22.7 1.0 19.5 19.5 18.1 20.4 19.2 19.8 0.5
TMAX_08 21607.00 32.86 <0.0001 23.4 23.5 20.5 25.9 22.7 24.1 1.0 20.8 20.9 19.5 21.8 20.5 211 0.5
TMAX_09 20494.00 32.88 <0.0001 22.6 22.7 19.9 25.2 21.9 233 1.0 19.9 20.0 18.6 21.0 19.6 20.3 0.5
TMAX_10 21088.00 32.87 <0.0001 20.6 20.7 17.8 233 19.9 21.2 1.0 17.9 18.0 16.6 18.9 17.6 18.3 0.5
TMAX_11 18085.00 32.93 <0.0001 17.7 17.8 14.9 20.4 17.1 18.5 1.0 15.0 15.1 13.8 16.0 14.7 15.4 0.5
TMAX_12 21723.50 32.86 <0.0001 16.2 16.2 13.3 18.7 15.5 16.9 1.0 134 13.6 12.2 14.4 13.1 13.8 0.5
TMIN_01 18656.00 32.92 <0.0001 9.7 9.7 6.9 12.3 9.0 10.4 1.0 6.9 7.0 5.5 8.0 6.6 7.3 0.5
TMIN_02 20497.50 32.88 <0.0001 9.1 9.1 6.1 11.5 8.4 9.8 1.0 6.2 6.3 4.7 7.4 5.9 6.6 0.6
TMIN_03 19309.50 32.91 <0.0001 9.7 9.8 6.7 12.3 9.0 10.3 1.0 6.9 7.0 5.5 8.1 6.5 7.3 0.5
TMIN_04 14697.50 33.00 <0.0001 9.8 9.9 6.9 12.3 9.1 10.5 1.0 6.9 7.1 5.6 8.1 6.6 7.3 0.5
TMIN_05 16652.00 32.96 <0.0001 11.2 11.3 8.4 13.8 10.6 11.9 1.0 8.4 8.5 7.0 9.5 8.1 8.8 0.5
TMIN_06 17460.50 32.95 <0.0001 13.2 133 10.3 15.7 12.5 13.9 1.0 10.4 10.6 9.2 11.6 10.1 10.8 0.5
TMIN_07 17647.00 32.94 <0.0001 15.1 15.2 12.4 17.6 14.4 15.8 1.0 12.4 12.6 11.1 13.5 12.1 12.8 0.5
TMIN_08 18488.50 32.92 <0.0001 16.3 16.3 13.6 18.8 15.6 17.0 1.0 13.6 13.7 12.3 14.5 13.3 13.9 0.5
TMIN_09 17695.50 32.94 <0.0001 15.9 16 13.0 18.6 15.2 16.7 1.0 13.2 13.3 11.9 14.3 12.9 13.6 0.5
TMIN_10 18112.00 32.93 <0.0001 14.0 14.1 11.1 16.5 13.4 14.8 1.0 11.3 11.4 9.9 12.3 10.9 11.6 0.5
TMIN_11 17703.00 32.94 <0.0001 12.3 12.4 9.4 15.0 11.6 13.0 1.0 9.5 9.6 8.0 10.6 9.1 9.9 0.5
TMIN_12 19459.50 32.90 <0.0001 10.7 10.8 7.9 13.2 10.0 11.4 1.0 7.9 8.0 6.6 9.0 7.5 8.3 0.5




Table S3.1 (Cont.)

Mann-Whitney U Results

Predicted suitable

Predicted unsuitable

u Z Adj. p-level Mean Median Min Max Lower Upper Std.Dev. Mean Median Min Max Lower Upper Std.Dev.
ETO_01 609435 21.06 <0.0001 23.0 21.7 -3.1 77.5 15.5 27.9 11.0 10.4 6.2 -6.2 37.2 3.1 15.5 9.3
ETO_02 592347 21.38 <0.0001 25.0 25.2 -2.8 70.0 16.8 30.8 11.1 11.3 11.2 -5.6 33.6 2.8 16.8 9.3
ETO_03 645657 20.29 <0.0001 32,5 34.1 -3.1 713 21.7 43.4 14.6 15.9 18.6 -6.2 37.2 3.1 27.9 12.4
ETO_04 523133 22.76 <0.0001 41.7 45.0 0.0 78.0 33.0 54.0 15.8 21.2 27.0 -3.0 45.0 9.0 30.0 12.5
ETO_05 540867 22.40 <0.0001 53.4 55.8 9.3 93.0 40.3 65.1 17.6 30.9 34.1 6.2 58.9 18.6 40.3 13.4
ETO_06 533811 22.53 <0.0001 58.7 63.0 15.0 99.0 45.0 72.0 18.0 35.3 36.0 12.0 66.0 21.0 45.0 13.6
ETO_07 566930 21.86 <0.0001 68.5 71.3 155 114.7 52.7 83.7 22.2 41.0 434 9.3 83.7 24.8 52.7 16.6
ETO_08 645155 20.27 <0.0001 64.6 71.3 3.1 114.7 49.6 83.7 25.7 37.0 43.4 -3.1 80.6 15.5 52.7 20.9
ETO_09 688317 19.41 <0.0001 47.9 54.0 -6.0 99.0 33.0 63.0 22.5 24.8 30.0 -12.0 60.0 3.0 42.0 19.5
ETO_10 727156 18.63 <0.0001 36.0 37.2 -6.2 93.0 21.7 46.5 17.3 17.8 18.6 -6.2 55.8 3.1 31.0 15.3
ETO_11 701850 19.16 <0.0001 25.1 24.0 -6.0 84.0 15.0 33.0 12.7 11.9 9.0 -6.0 45.0 3.0 18.0 11.3
ETO_12 594536 21.36 <0.0001 23.4 21.7 -3.1 80.6 15.5 27.9 11.3 10.5 6.2 -6.2 40.3 3.1 15.5 9.4
RHMAX_01 621130.5 -20.75 <0.0001 97.8 98.4 89.6 100.1 96.6 99.3 1.8 99.4 99.5 97.3 100.1 99.2 99.8 0.5
RHMAX_02 651350.0 -20.14 <0.0001 97.6 98.3 89.2 99.9 96.2 99.2 19 99.3 99.4 97.3 99.9 99.1 99.7 0.4
RHMAX_03 622684.0 -20.72 <0.0001 97.8 98.3 90.0 100.1 96.7 99.3 1.8 99.4 99.5 97.1 100.1 99.2 99.8 0.5
RHMAX_04  542155.0 -22.35 <0.0001 98.0 98.5 90.6 100.0 97.2 99.2 1.6 99.5 99.6 96.7 100.0 99.3 99.8 0.5
RHMAX_05 615727.0 -20.86 <0.0001 98.1 98.6 90.5 100.0 97.3 99.3 1.6 99.4 99.5 97.3 100.0 99.2 99.8 0.4
RHMAX_06 576617.5 -21.65 <0.0001 98.2 98.6 91.3 99.9 97.5 99.3 1.5 99.4 99.5 96.7 99.9 99.3 99.8 0.4
RHMAX_07 660486.5 -19.96 <0.0001 98.5 98.8 92.2 100.0 97.9 99.5 1.3 99.5 99.6 96.8 100.0 99.3 99.8 0.4
RHMAX_08 615900.0 -20.86 <0.0001 98.3 98.7 91.5 100.1 97.5 99.4 1.5 99.5 99.6 97.1 100.1 99.3 99.9 0.4
RHMAX_09 526070.0 -22.67 <0.0001 98.0 98.5 90.8 100.0 97.1 99.3 1.6 99.5 99.6 96.9 100.0 99.3 99.8 0.4
RHMAX_10 570308.0 -21.78 <0.0001 98.1 98.6 90.8 100.2 97.3 99.4 1.6 99.6 99.6 97.0 100.2 99.3 99.9 0.4
RHMAX_11  449437.0 -24.22 <0.0001 97.8 98.3 89.7 99.9 96.9 99.1 1.7 99.4 99.5 96.6 99.9 99.3 99.8 0.5
RHMAX_12  564903.5 -21.88 <0.0001 97.7 98.3 89.3 100.2 96.5 99.3 19 99.5 99.6 97.1 100.2 99.2 99.9 0.5




Table S3.1 (Cont.)

Mann-Whitney U Results

Predicted suitable

Predicted unsuitable

u Z Adj. p-level Mean Median Min Max Lower Upper Std.Dev. Mean Median Min Max Lower Upper Std.Dev.
RHMIN_01 83989 -31.59 <0.0001 87.9 87.4 77.4 995 84.6 91.1 4.4 97.0 96.9 935 99.6 96.0 98.0 1.3
RHMIN_02 70410 -31.86 <0.0001 87.0 86.6 76.4  99.1 83.5 90.3 4.5 96.7 96.6 93.3 99.5 95.8 97.8 14
RHMIN_03 73381 -31.80 <0.0001 88.0 87.5 77.8 99.4 84.7 91.2 4.3 97.1 97.0 93.9 99.6 96.2 98.0 1.2
RHMIN_04 31338 -32.65 <0.0001 86.8 86.2 76.9 98.8 83.6 89.8 4.3 97.1 97.1 935 99.8 96.4 98.0 1.3
RHMIN_05 43089 -32.41 <0.0001 87.5 87 77.7 99.0 84.5 90.5 4.2 97.2 97.2 93.7 99.7 96.4 98.2 1.2
RHMIN_06 33139 -32.62 <0.0001 87.7 87.1 78.3 98.9 84.8 90.5 4.0 97.3 97.3 93.9 99.7 96.5 98.2 1.2
RHMIN_07 26628 -32.75 <0.0001 86.9 86.5 78.2 97.8 84.2 89.6 3.9 96.8 96.7 93.0 99.8 95.8 97.8 1.5
RHMIN_08 31582 -32.65 <0.0001 86.7 86.3 780 975 84.0 89.3 3.8 96.4 96.3 92.8 99.7 95.3 97.6 1.6
RHMIN_09 32616 -32.63 <0.0001 87.3 86.8 78.1 98.2 84.4 90.1 4.0 96.9 97.0 935 99.6 96.0 97.9 1.3
RHMIN_10 31976 -32.64 <0.0001 87.4 86.9 78.1 98.7 84.4 90.3 4.0 97.1 97.1 93.8 99.7 96.4 98.0 1.2
RHMIN_11 45890 -32.36 <0.0001 87.9 87.4 77.6 99.1 84.8 91.1 4.3 97.4 97.3 93.3 99.6 96.8 98.1 1.0
RHMIN_12 67394 -31.92 <0.0001 87.7 87.2 77.3 99.5 84.3 91.0 4.4 97.0 97.0 94.0 99.6 96.2 98.0 1.2
RS_01 1440171 4.22 <0.0001 4.1 4.3 0.0 16.1 0.8 6.1 3.4 3.6 3.1 0.0 14.7 0.0 5.9 3.7
RS_02 1394352 5.14 <0.0001 5.6 6.2 0.0 16.7 2.1 8.2 3.8 4.6 4.8 0.0 15.7 0.1 7.7 4.1
RS_03 1261161 7.82 <0.0001 7.5 8.9 0.0 15.5 4.3 10.5 4.1 5.8 6.8 0.0 14.6 11 9.5 4.2
RS_04 1034180 12.40 <0.0001 10.5 11.9 1.1 16.7 8.0 13.5 4.3 8.0 9.6 11 16.4 3.8 11.3 4.2
RS_05 969394 13.71 <0.0001 12.6 13.7 3.1 18.1 10.1 15.7 4.1 9.9 10.1 3.3 18.0 6.7 12.8 3.8
RS_06 944588 14.21 <0.0001 13.1 14.1 4.1 18.6 10.2 16.2 3.9 10.3 10.1 4.1 18.6 7.4 12.9 3.6
RS_07 910740 14.90 <0.0001 14.0 14.9 3.8 20.3 11.0 17.3 4.5 10.6 10.5 3.8 20.3 7.4 13.6 4.0
RS_08 949803 14.11 <0.0001 12.7 14 1.6 20.0 9.8 16.4 5.0 9.4 10.5 1.7 19.8 5.1 12.7 4.6
RS_09 1099049 11.09 <0.0001 9.7 11.2 0.1 18.3 6.5 13.2 4.8 7.2 8.4 0.1 17.3 2.2 11.1 4.6
RS_10 1336257 6.31 <0.0001 6.7 7.6 0.0 17.7 3.1 9.6 4.2 5.2 5.8 0.0 17.3 0.6 8.8 4.3
RS_11 1405722 4.91 <0.0001 4.7 5 0.0 16.7 1.1 6.9 3.6 3.9 3.5 0.0 16.1 0.0 6.6 3.8
RS_12 1445826 4.11 <0.0001 3.9 3.9 0.0 16.3 0.6 5.7 33 3.4 2.6 0.0 15.5 0.0 5.6 3.6






