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a b s t r a c t

Biodiversity surrogates are needed because detailed data on the distributions of species

and communities is very limited. Among alternative surrogate strategies there is an

environmental diversity (ED) framework, which uses the p-median model to sample

environmental space as evenly as possible. The underlying idea is that such a sample

would represent underlying species diversity well. However, tests of the effectiveness of

ED as a surrogate for species diversity have been inconclusive, and there is a debate

concerning the usefulness of different implementations of ED. In particular, it has been

argued that tests of the ED framework are flawed because they used discrete algorithms

(calculating the p-median from an observed environmental space), while continuous

versions of ED should be preferred (i.e. calculating the p-median from a theoretical,

continuously spaced, environmental space). Unfortunately, progress has been hampered

by lack of independent testing of the two ED approaches. Here, we provide the first

empirical test of the effectiveness of both continuous and discrete ED using European

distributions of amphibians and reptiles. Analyses were implemented considering two

different extents: (1) western Europe and (2) the Iberian Peninsula. In both cases, imple-

mentations of ED represented species at a lower rate than expected by chance (P < 0.05).

Unlike suggested by some authors, the continuous ED was not consistently superior to the

discrete form: continuous implementations of ED performed slightly better when fewer

areas were selected and discrete ED performed better when the whole of the western

European region was considered. Our results support findings that ED has only limited

value as a surrogate for biodiversity and invite the interpretation that failure of ED is more

likely to be related with oversimplification of assumptions underlying the model than to

the particular p-median algorithm used.
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1. Introduction

Knowledge on the distribution of species is limited. Thence it is

often the case that conservation planning requires the use of

environmental surrogates for the distribution of biodiversity.

Should such surrogates be effective, they could be used to

design species sampling campaigns (Ferrier, 2002; Hortal and

Lobo, 2005; Funk et al., 2005; Rocchini et al., 2005) or to locate

networks of areas for the conservation of biodiversity (Faith and

Walker, 1996; Faith et al., 2001; Trakhtenbrot and Kadmon, 2005;

Sarkar et al., 2005; Bonn and Gaston, 2005; Heino and Mykra,

2006). One possible framework for using environmental data as

a surrogate for biodiversity was proposed by Faith and Walker

(1994, 1996). The framework proposes that if one selects

conservation areas that include a greater number of different

types of environments, then we would expect these areas to

represent more species than if areas were selected with a more

restricted number of types of environments (Austin and

Margules, 1984; deVelice et al., 1988; Margules et al., 1988; Faith

and Walker, 1996). If this surrogate framework was effective,

then it should be particularly useful in poorly surveyed regions,

because environmental data are readily accessible at low cost,

whereas biological surveys are not.

The idea of sampling environmental pattern as surrogate

strategy for biodiversity was termed environmental diversity

(ED) by Faith and Walker (1994, 1996). The ED framework is

based on the concept of complementarity proposed by Vane-

Wright et al. (1991) and subsequently defined by Williams (2001)

as a ‘property of sets of objects that exists when at least some of

the objects (species) in one set (areas) differ from the objects

(species) in another set (areas)’. Put simply, the complemen-

tarity principle states that if one selects areas with different

species compositions [or different types of environments] one

would attain full representation of species in these areas more

rapidly than if areas were selected with redundant species

compositions [or similar types of environments]. Drawing on a

wealth of literature in geography and urban planning, the ED

framework was formalised as a p-median model (Church and

Sorensen, 1996; Church, 2002). The p-median is a specific

location-allocation problem with a relatively simple rationale: if

p sites are selected from a group ofm demand sites, the location

of these sites minimizes the sum of the distances between the

demand sites and the p sites. This is a well-studied location-

allocation problem in operational research, and a number of p-

median models have been proposed to solve it (e.g. Mladenović

et al., 2007). When applied to environmental space (as opposed

to geographical space, which is where p-median models have

been applied more often), solving the p-median problem is

expected to be conceptually equivalent to maximising ED (Faith

and Walker, 1996).

Even though the ED framework is logically intuitive, its

usefulness has been questioned on the grounds that there is

limited empirical evidence in support of the idea that

maximizing environmental diversity in sets of areas would

also maximize species diversity (for debate see Araújo et al.,

2001, 2003, 2004; Faith, 2003; Faith et al., 2004). Proponents of

the ED framework have argued that published tests are based

on an inappropriate choice of the models used to solve the p-

median problem. In particular, the authors argue that a

‘discrete’ form of ED rather than the [preferred] ‘continuous’

form have been utilized (Faith, 2003; Faith et al., 2004).

According to these authors the continuous p-median (Faith

and Walker, 1994, 1996) creates an equally stratified sampling

of environmental gradients by allocating n regularly spaced

‘ideal’ demand points at regular distances throughout each

environmental dimension. These n ideal points are used to

represent the m original (i.e. real) demand sites: once p ‘ideal’

points that provide the better coverage of the environmental

gradients are identified, the m ‘real’ sites placed nearest to

each one of them are included within the group of selected

sites (see Faith and Walker, 1994; Faith, 2003). In contrast, the

discrete p-median form (Araújo et al., 2001, 2003, 2004; Hortal

and Lobo, 2005) uses the available m sites as demand points

instead of the n ‘ideal’ points regularly spaced in a theoretical

space. Due to this, Faith et al. (2004) argued that the

environmental description of the region provided by the

discrete p-median could be limited, thus failing to represent

the turnover of species produced by their responses to

environment. Here, it is important to notice that classifying

p-median models into discrete and continuous forms is a poor

representation of the variety of models available to solve the

minimum distance problems that are available in the spatial

planning literature (e.g. Daskin, 1995; Moreno Jiménez, 2004;

Mladenović et al., 2007); while the continuous p-median is

similar to the MINISUM models, the discrete p-median form

actually corresponds to most of the models available to solve

the p-median location-allocation problem in such literature. In

spite of this, we have chosen to retain the terminology used by

Faith (2003) throughout the text to avoid introducing new

terms and thus potentially diverting the discussion of

substance to issues of semantics (e.g. Faith et al., 2004).

In contrast with the debate regarding the performance of

different p-median algorithms, criticism of the ED framework

is often related with the robustness of the underlying theory.

The ED framework assumes that species distributions are at

equilibrium with the current environmental conditions, i.e.,

species occur in all climatically suitable areas whilst being

absent from all unsuitable ones, even though there is evidence

this is not often the case (e.g. Araújo and Pearson, 2005; Araújo

et al., 2008). It is also expected that species responses to

environmental variables are unimodal: ‘‘Environmental diver-

sity can be linked with ‘expected biodiversity’ at the species

level by drawing on the model’s characterization of species’

responses to environmental continua or gradients as generally

unimodal’’ (Faith and Walker, 1996, p. 421). Although species

are indeed expected to respond to environmental variables

following some sort of bell-shaped response curve, there are

several factors that might modify this response (e.g. Austin

et al., 1990; Thuiller et al., 2004). Although the basic

assumptions of the ED formulation could be adapted to

different situations (Faith and Walker, 1996; Faith, 2003; Faith

et al., 2004), the idea that sampling environmental pattern

would maximise species diversity in sets of areas is unavoid-

ably linked with such species’ response model and with

assumptions of equilibrium.

So far, independent testing of the ED framework has only

been performed with the discrete p-median. These tests have

shown that ED would often fail to represent species diversity

at a rate higher than expected by chance (using the P < 0.05

threshold) (Araújo et al., 2001). The authors also showed that
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species that were not represented with the ED framework

were those most likely not to be at equilibrium with current

environmental conditions (for additional discussion see

Araújo and Pearson, 2005; Araújo et al., 2008). An interpreta-

tion was made that the failure of ED indicated the difficulty of

the approach to represent species diversity when species

distributions were highly affected by unaccounted historical

factors (see also Araújo et al., 2003, 2004; Whittaker et al.,

2005). In response to these interpretations, Faith (2003) and

Faith et al. (2004) argued that unsuccessful recovery of species

diversity with ED was due to use of the discrete ED rather than

the preferred continuous version (see above). The debate has

thus been polarised between those attributing the failure of ED

to the inability of the approach to account for important

[historical] determinants of species ranges, and those attri-

buting the failure of ED to the characteristics of the location-

allocation model used.

Here we provide a first test of the effectiveness using the ED

framework to select conservation areas for European amphi-

bian and reptile diversity that compares both the discrete and

the continuous implementations of ED. In order to explore the

sensitivity of ED to the spatial extent of the studied areas we

perform the test using two regions: western Europe and the

Iberian Peninsula.

2. Data

2.1. Species data

Species data included records of occurrence for 143 amphibian

and reptile species (Gasc et al., 1997) within western Europe.

The grid used was based on the Atlas Florae Europaeae (Lahti

and Lampinen, 1999), with cell boundaries typically following

the 50 km lines of the Universal Transverse Mercator (UTM)

grid, except near the border of the six-degree UTM zones and

at coasts. The mapped area for Europe (2289 grid cells) includes

western, northern and southern Europe, but excludes most of

the eastern European countries (except for the Baltic States)

where lower recording effort was less uniform and intensive.

In the case of the Iberian Peninsula (Iberia), the 251 grid cells

located south of the Pyrenees were used. For details on data

conversion see Williams et al. (2000).

2.2. Climate data

A set of aggregated climate parameters were derived from an

updated version of the CRU (Climate Research Unit at the

University of East Anglia, UK) monthly climate data (New et al.,

2000). The updated dataset provides monthly values for the

years 1901–2000 in 10� 10 min spatial resolution (Mitchell

et al., 2004; Mitchell and Jones, 2005) and were used to

calculate mean values of five different climate parameters for

the period of 1961–1991. Variables included mean annual

temperature within time slices (8C), mean temperature of the

coldest month (8C), mean temperature of the warmest month

(8C), mean annual summed precipitation (mm), and mean sum

of precipitation between July and September (mm). We also

calculated growing season, defined as the temperature sum of

all consecutive days with mean temperature greater than 5 8C.

Choice of variables was made to reflect primary qualities of the

climate that, on the basis of prior knowledge, have known

roles in imposing physiological constraints upon the distribu-

tions of amphibian and reptile species (Carey and Alexander,

2003; Araújo et al., 2006; Whittaker et al., 2007).

2.3. Formulation of continuous and discrete ED forms

In a recent description of the ED framework, Faith et al. (2004;

see references therein), described ED as a specific framework

for using (1) distance (i.e. dissimilarity) measures and

ordinations of environmental and/or biotic descriptors as

surrogates for species diversity, and (2) p-median location-

allocation procedures to select areas that represent as much

variability as possible. ‘p-median’ models are based on a

continuous description of the environment, and attempt to

avoid the problems of arbitrarily classifying environments

into discrete entities when they are in effect continuous

gradients. Faith and Walker (1996, p. 420) claim that: ‘‘The

solution to this problem is to use the environmental descrip-

tions of the areas to describe a continuum of variation among

areas (. . .) by deriving a continuous environmental space (. . .)

rather than a clustering. . .’’. More specifically, the aim of these

location-allocation procedures is to select a set of p sites (here,

grid cells) that minimize the total sum of the distances

betweenm demand sites (places available for protection) and p

selected sites. Both discrete and continuous p-median

procedures require two steps: (1) construct the matrix of

distances between the studied demand points, and (2) select p

sites according to a distance minimization criterion.

2.4. Distance matrices

The variation between a pair of sites can be quantified using

dissimilarity measures. Therefore, the variability within a

region can be described using a single distance matrix which

contains all pairwise distances between the demand points

present in the region. It is in this step of the ED calculation that

discrete and continuous versions diverge. In the discrete ED,

the distance matrix is developed using the scores of the

environmental variables observed in each one of them original

sites that constitute the set of demand points in the selection

process. In the continuous ED, a new set of n regularly spaced

demand points is created using all environmental variables

(see Faith and Walker, 1994, 1996; Faith, 2003; Faith et al., 2004),

and the distance matrix is developed using these ‘ideal’ n

demand points that represent the m original sites. Each

original site mi is assigned to the ideal demand point nj located

nearest to it (see Fig. 1).

We used the original pairwise distance-matrix for all p-

median calculations (Hortal and Lobo, 2005) to avoid losses of

information associated with transforming original matrix

distances into ordination ranks. For both western Europe and

the Iberian Peninsula we developed two different distance

matrices using squared Euclidean distances:

(1) Discrete ED (dED): the discrete matrices contain the

distances among all m original grid cells. Therefore, these

distance matrices are directly calculated from the original

data, using the scores of all seven environmental variables
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at each grid cell mi, and no prior ordination is needed to

calculate them.

(2) Continuous ED (cED): the continuous matrices contain the

distances among a set of n ideal demand points, rather

than among the original grid cells. These ideal demand

points are placed regularly across the most important

environmental gradients of the region, and the original m

cells are assigned to them (see Fig. 1). Therefore, to create

the ideal demand points it is first necessary to identify the

main environmental gradients in the region. Here, this was

achieved through an ordination that summarised seven

environmental variables in the two axes that reduced

Fig. 1 – Allocation of points in a continuous ED formulation. (A) Two (or more) uncorrelated axes are obtained by means of an

ordination technique (Grey squares are the ‘original sites’, which are the demand points in a discrete ED formulation). (B)

Each one of these axes is divided into equal intervals (of distance di), and the points accounting for all the combinations of

these intervals are located into the space defined by these axes (empty circles). (C) All the points outside the convex surface

defined by the original sites are deleted. In our case, to avoid excluding the extremes of the environmental gradients (which

could host assemblages different from the rest of the territory) we included also points placed near but outside the actual

range of environmental conditions of the region (defined by the location of the original sites), when they were included in a

buffer of two times di (discontinuous line). (D) The rest of the points (i.e. all empty circles remaining in C) are considered as

‘ideal’ demand points, and were assigned to the nearest ‘original site’ (i.e. once a demand point is selected, the nearest

original site is included in the selection). Note that two different ideal demand points could be assigned to the same original

site (e.g. points a and b in the figure are both assigned to site 1), and that several of the original sites could not be

represented by demand points (e.g. the original site 2 has no assigned points, as c, d, e and f are located next to other four

original sites).

Table 1 – Results from the NMDS ordination analyses

Western Europe Iberian Peninsula

Factor 1 50.71 78.47

Factor 2 19.25 14.83

Total 69.96 93.30

The factors obtained were used to develop the continuous ED

formulations. Scores are reductions in stress for each factor, and

total reduction in stress (in percentages).
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‘stress’ in non-metric multidimensional scaling (NMDS)

(see Table 1). Then, a number of n ideal demand points

were located regularly across the space defined by these

two axes (see method at Fig. 1). In order to obtain a

comparable number of grid cells from those used to create

the discrete matrices, we divided each axis in 50 intervals

(in western Europe), and 16 intervals (in the Iberian

Peninsula), generating 2500 and 256 demand points in

step B of Fig. 1, respectively. After assigning each ideal

demand point nj to its nearest mi grid cell (steps C and D of

Fig. 1), n = 1191 and n = 120 grid cells were represented in

the two distance matrices. It is thus assumed that the n

ideal demand points associated to these grid cells

summarize the variability in the grid cells not represented

in the distance matrices.

We used squared instead of ‘simple’ Euclidean distances to

maximize the distances between closely related sites, thereby

avoiding an excessive aggregation of the sites. All matrix and

ordination analyses were performed using Clustan Graphics

package (Clustan Ltd., 2002).

2.5. Selection algorithm

p-Median models can be solved with optimal and heuristic

(near-optimal) approaches. Optimal approaches are time

consuming and require substantial computing power for

dealing with large problems. Heuristic approaches can take at

least two forms (see discussion in Araújo et al., 2001, 2003;

Faith, 2003): (1) ‘greedy approaches’, which make a sequence

of p location selections (i.e. they select p areas one by one in an

iterative fashion); (2) more advanced system-wide search

approaches, which produce a single suboptimal solution of a

pre-determined number of p areas based on more complicated

(and also time-consuming) heuristics that search within

groups of areas instead of within areas one by one (see

Mladenović et al., 2007 for a comprehensive review of these

approaches). The differences between these two kinds of

approaches result in different levels of optimality in the

obtained selections. Although each of the consecutive selec-

tions in a greedy algorithm is optimal (given the distribution of

the data and the selections already made), at each stage the

algorithm only considers the remaining m (or n in the case of

the continuous p-median) ‘‘vacant’’ demand points for the

new selection; as a result, a sequence of optimal selections can

result in a globally sub-optimal solution for the p areas. On the

contrary, system-wide algorithms select these p areas from

among the m vacant demand points as a group in a single step,

resulting in a greater degree of optimality (see Araújo et al.,

2003). Faith and Walker (1996) and Hortal and Lobo (2005) used

greedy algorithms, while algorithms used by Densham and

Rushton (1992), Church et al. (1996), and Araújo et al. (2001,

2004) pertain to the system-wide kind.

Given that results of greedy algorithms at each step are

sensitive to the choices made in previous steps (Church and

ReVelle, 1974), more complex algorithms would provide better

results (see Church and Sorensen, 1996; Church et al., 1996;

Araújo et al., 2003; Moreno Jiménez, 2004). Although one of

these algorithms is available to us (Densham and Rushton,

1992), we decided to use a greedy algorithm to allow

comparison with the original ED implementation of the

analytical framework proposed by Faith and Walker (1996).

Therefore, we have selected areas using the greedy algorithm

of Hortal and Lobo (2005) and repeated the selection a number

of times to assess if different sub-optimal solutions would

have resulted in markedly unstable solutions.

In each selection of p areas, the algorithm calculates, for

each non-selected demand point mi, the distance of all m non-

selected demand points to the nearest selected one (S), if the

point mi is included in the group of selected items (S + mi):

dm;s ¼min distðm; SþmiÞ (1)

Then, the p-median score for each demand point mi is calcu-

lated as the sum of all dm,s:

p-mediani ¼
Xi¼m

i¼1

dm;s (2)

All the demand points with p-median scores included in the

confidence interval defined by the minimum score plus the

standard deviation are chosen:

8 i 2 ½ðminm
i¼1 p-medianiÞ; ðminm

i¼1 p-medianiÞ

þ ðSDm
i¼1 p-medianiÞ� (3)

Finally, when there are ties among the p areas selected in a

given step (i.e. more than one demand point is chosen at any

stage) one of these p areas is selected at random. In the case of

the continuous ED, the nj demand points assigned to the same

mi grid cell as the selected one (see Fig. 1) are also excluded

from the selection procedure. This process is repeated itera-

tively after the inclusion of each new area pi, up to the desired

number of p areas. For a more detailed formulation and one

example of the application of the algorithm see Appendix A.

2.6. Analyses

Because greedy algorithms (as any other heuristic algorithm)

are bound to select different near-optimal solutions at each

run, we performed 10 different runs for every matrix. A subset

of grid cells (10 and 3 cells in the case of the western European

and Iberian datasets, respectively) was selected at random to

start each run. Therefore, in the results, we provide the mean

and dispersion of the effectiveness of these 10 series of

selections. We measured the effectiveness with which ED

represents amphibian and reptile species at different levels of

territorial coverage (from 11 to 250 grid cells [0.48–10.9%] in the

case of western Europe, and 4 to 25 grid cells [1.59–9.96%] in the

case of the Iberian Peninsula). We compared results with the

mean and at the upper 5% level of the representation obtained

with 1000 random selections (for details and discussion on the

use randomization tests in conservation see Araújo et al., 2001,

2003, 2004; Faith, 2003; Faith et al., 2004).

To ascertain if the variability of the greedy selections could

result in important differences in species representation

between the solutions found, we examined their stability

(i.e. the reduction in the standard deviation of the effective-

ness of the selections as the number of grid cells selected
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increases). It was assumed that p-median solutions would

converge to a near-optimal solution after a number of

iterations, and therefore the differences in their effectiveness

would be reduced (i.e. the standard deviation will diminish

and stabilize) (see also O’Dea et al., 2006).

3. Results

In all model runs, ED represented fewer species than expected

by chance (P < 0.05). In western Europe the discrete and

continuous ED selections performed so poorly that they

represented fewer species than the mean level of species

representation obtained with random simulations (Fig. 2). In

the Iberian Peninsula, ED represented more species than the

mean representation value obtained with random simula-

tions, but the level of species representations was lower than

expected by chance (P < 0.05, Fig. 2).

The effectiveness of discrete and continuous environmen-

tal ED was similar in both western Europe and Iberia.

Nevertheless the continuous version of ED performed slightly

better during the initial selections (Fig. 2): differences in

species representation between these two ED approaches

were always smaller than 7% (median = 2.3% and 4.9% in

western Europe and the Iberian Peninsula, respectively).

When more than 4% of the studied areas were selected, the

differences between the effectiveness of the two ED selections

became irrelevant [median < 0.3% in western Europe (from 92

to 250 areas selected) and<1.2% in the Iberian Peninsula (from

5 to 25 areas selected)]. All selections converged with relatively

small territorial coverage (6% for the Iberian Peninsula and 5%

for western Europe) (see Fig. 2).

4. Discussion

Our study supports the findings of previous studies that

challenge the view that the ED framework always represents

species at a rate higher than expected by chance. Whereas

previous studies used the discrete version of ED, in this study

we used both the discrete and the continuous implementa-

tions of ED. In doing so we address the criticism of Faith (2003)

and Faith et al. (2004), that challenged previous tests on the

grounds that discrete versions of ED had been used rather than

the ‘preferred’ continuous version of ED. Our results show that

the two versions of ED provide similar representation results,

Fig. 2 – Results from the p-median selections. Upper graphs show the mean percentage of species represented in the 10

samples as the number of selected grid cells increases. The graphs below show the standard deviation of these ten

samples. Continuous and discrete ED selections are shown as empty circles and dashed line and empty triangles and

dotted line, respectively. The symbols in the western Europe graphs correspond to each tenth grid cell selected. The median

and upper 5% tails of the species represented by 1000 random selections are shown as continuous line, and dots and lines,

respectively.
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i.e., similar numbers of species are represented when either

method is used (Fig. 2). We hope these results will help move

the field forward and lead to a more fruitful discussion of the

circumstances that make ED more likely to succeed as a

surrogacy strategy.

A first step for making progress is to deepen out

understanding of the theoretical implications of ED and

examine the consequences of using different implementa-

tions of the ED framework. In effect, the theoretical

assumptions under the continuous and discrete forms of

p-median correspond to two ways of representing contin-

uous variables in a geographical space: field and object

representations (see Cova and Goodchild, 2002). Briefly, field

representations are spatially continuous representations of

the studied phenomenon or variable, summarized either by

a mathematical function, or by regularly allocated points, by

equal-score lines (i.e. isopleths), or spatial tessellations (i.e.

raster grids, or TIN polygons) that represent the scores of

the variable in the geographical space. In contrast with

object representations the scores of the studied variable are

referred to as discrete objects defined in the geographical

space (e.g. houses or land patches), defined as points, lines,

polygons, or groups of grid cells in a raster environment.

These two kinds of representations are conceptual perspec-

tives rather than inherent qualities of geographical phe-

nomena; therefore, any aspect of the geographical reality

can be conceptualized and modelled using either one of the

two approaches (Cova and Goodchild, 2002). The approach

most suited to represent a given phenomenon depends on

the purpose and context of the modelling exercise and

might vary from case to case. The choice of the ED

implementation might be contingent on the particular goals

of the surrogacy strategy and the context in which it is

developed; therefore, it might be difficult to establish a priori

theoretical constraints for it.

The choice of the ED version implies slightly different

assumptions about the response of the species to environ-

mental gradients. The original theoretical formulation of ED

(Faith and Walker, 1996; see also Faith et al., 2004) relies on two

basic assumptions: firstly, that the breadth of environmental

variation in a region matches the full breadth of species

fundamental niches, which should be best described as a

unimodal species response to the environment; secondly, that

the centroids of the species distributions are randomly

distributed in the environmental space. In the discrete p-

median, the species responses are hypothetically represented

by the environmental conditions available in the studied

region. Faith et al. (2004) argued that, whilst continuous ED

treats the environmental space as reflecting how turnover

among species occurs, discrete ED disrupts such turnover by

the geographic duplication of redundant p-median demand

points. However, a logical implication of continuous ED

assumptions is that the density of species would be homo-

geneously distributed along the gradient of environmental

variation, regardless of the representation of these gradients

in the geographic space (Araújo et al., 2003). This is in clear

contradiction with the evidence that patterns of speciation

and extinction are unevenly distributed in geographical space.

Thus, Hortal and Lobo (2005) argued that such turnover would

be better described using the actual conditions in the region

and the observed response of species assemblages to these

conditions.

Beyond the discussion on the theoretical implications of

the two ED frameworks, our results indicate that the spatial

distributions of the species are measured with similar

effectiveness by both implementations of ED. Providing that

both continuous and discrete ED aim to describe the same

phenomenon (geographic variations in species composi-

tion), it is expected that they might perform similarly. An

implementation of ED will outperform the other if the

assumptions underlying one of the two approaches provide

a more adequate description of the species distribution

patterns in the studied region. Interestingly, if some parts of

the gradients are overrepresented due to the high similarity

of some clumped real demand points (as argued by Faith

et al., 2004), the effect on discrete p-median selections will be

minimum; since solving the p-median problem involves

summing distances of p areas to all unselected m demand

points, such clusters of sites are virtually treated as being

just one, and therefore once one site in the cluster is

selected, the probability of selecting another one is highly

diminished.

Significant differences between discrete and continuous

ED appear only if there are important gaps in the coverage of

the environmental gradients provided by the studied grid

cells, such as in the first steps of the selection process. In our

data, the redundancy in the demand points in the discrete p-

median argued by Faith et al. (2004) has no effect on the

coverage of the species turnover at least when more than a 4%

of all the cells in the region have been selected (see Fig. 2).

Below such area threshold, the continuous ED provided better

species representation, although the difference between

implementations of ED is typically less than 5%. Indeed,

optimal complementary solutions are often clustered in the

geographical space (e.g. Araújo et al., 2001; Cabeza, 2003;

Cabeza et al., 2004), so the overdispersion of the sites

produced by the continuous ED may not always be a desirable

property of a framework for selection of conservation areas

(as argued by Faith et al., 2004). Indeed, in our results the

differences between the two forms, if any, are so small that

there is no significant advantage in using either one form of

ED or the other.

The non-environmental effects not considered by the ED

framework are likely to affect both the continuous and

discrete ED. The response of the species to environmental

gradients is not only shaped by their basic requirements (i.e.

their potential distributions), but also by other factors that

modify these responses (see discussion in Lobo et al., 2006

and Araújo and Guisan, 2006). These factors include (1) the

geographic extent (Whittaker et al., 2001; Willis and Whit-

taker, 2002) and geomorphologic configuration (Jetz and

Rahbek, 2001) of the considered region and (2) past

environmental conditions and other historical factors (Lobo

et al., 2001; Hawkins et al., 2005; Svenning and Skov, 2005;

Araújo et al., 2008). It follows that the performance of ED

should be contingent on the size of environmental gradients

measured (Araújo et al., 2004) and the importance of the

historical factors governing current distributions of species

(Araújo et al., 2001). Thus, the geographical extent in which

ED is calculated should affect its effectiveness in sampling
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species distributions. For example, if the distributions of

species are more effectively explained by environmental

surrogates in small areas, then a surrogate strategy that

uses information of environmental variation at broader

geographical extents will most likely fail to represent

species diversity. Indeed, in small regional extents the

importance of non-environmental factors is likely to be

more important, and the distribution of the species is

expected to be at a greater measurable degree of equilibrium

with the current environmental gradients. When measuring

species diversity at broader regional extents, the effects of

environmental factors are likely to increase in importance,

which could potentially increase the ability of ED to recover

species diversity. However, our study does not provide a

strong support for an effect of extent on ED effectiveness.

Although the ED strategy was more effective at the smaller

extent of the Iberian Peninsula, its performance was still

worse than the expected by chance (Fig. 2). Indeed, the

recent post-glacial colonization of Europe has not produced

the gradual environmental response of amphibians and

reptiles predicted by the ED model as formulated by Faith

and Walker (1996) (Araújo and Pearson, 2005; Araújo et al.,

2008). On the contrary, a more complex colonization pattern

occurred, especially in the Mediterranean basin, where ED

was less capable of representing amphibian and reptile

diversity in the former Araújo et al. (2001) analysis (see also

Araújo et al., 2003; Araújo and Pearson, 2005). As a result, ED

selections perform worse than mean random selections in

all the studied cases.

Surrogates are used when no complete data on the

studied phenomenon are available. It follows that it is not

possible to know their effectiveness a priori, since they are

used in the absence of data. This implies that the choice of

surrogates should be based on partial evaluations, such as

the one presented here. An important condition for a

surrogate is its generality, i.e., its ability to represent target

features every time it is applied to. Therefore, any negative

result of ED should be taken as conditional evidence of its

lack of generality, and thus of its limited usefulness. Had we

used other areas and other biological groups for this

analysis, perhaps the results might have been different.

For example, Araújo et al. (2001) found that discrete ED

performed reasonably well for European plants, which are

known to be in greater degree of equilibrium with the

current environmental conditions than reptiles and amphi-

bians. However, the low effectiveness of ED in this and other

studies hampers its usefulness as a surrogacy strategy for

overall biodiversity.

5. Concluding remarks

Biodiversity surrogates should be judged according to their

ability to represent biodiversity targets. In this study, both the

continuous and discrete implementations of ED were used to

predict diversity among amphibian and reptile species. In

both cases we found that ED would represent fewer species

than expected by chance (P < 0.05). Similar results were found

by Ferrier and Watson (1997) and Araújo et al. (2001, 2004),

using slightly different implementations of the discrete ED

model. In theory, poor performance of ED could arise because

of: (i) the shortfalls in the data used for evaluation (including

false negatives, i.e., species present but unrecorded in some

grid cells); (ii) the inability of ED to represent important

drivers of the distribution of species diversity; and/or (iii) the

failure of particular implementations of ED to sample

adequately the environmental space. Whatever the source

of the problems, evidence in support of ED as a general

strategy for conservation planning remains limited. It is also

unlikely that simpler environmental surrogacy strategies

based on classifications (e.g. Trakhtenbrot and Kadmon, 2005;

Sarkar et al., 2005; Bonn and Gaston, 2005; Heino and Mykra,

2006) would have general applicability since they are also

prone to the same limitations of ED, namely the difficulty in

accounting for important non-environmental factors affect-

ing species distributions (e.g. human induced factors or

historical effects).

Nonetheless, the ED framework could be still useful, for

example, for stratifying samples in field surveys (see Hortal

and Lobo, 2005; Funk et al., 2005; Rocchini et al., 2005) and as

surrogates of forgone biodiversity values into trade-offs

analyses of relatively small areas (e.g. continuous land

patches or protected areas) (see Faith et al., 1996, 2003; Faith

and Walker, 2002). However, formal evaluation of the

performance of ED would also be required to assess its

potential effectiveness in both tasks.
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Appendix A

Example of the application of the p-median greedy selection

algorithm used by Hortal and Lobo (2005) and in this paper to

some simple example data for the selection of three sites (p)

from a hypothetical set of 10 sites (demand points, md or mi),

according to their environmental characteristics, described by

two environmental factors (F1 and F2).

Sites F1 F2

m1 S2 S2

m2 0 S2

m3 1 S1

m4 S1 0

m5 2 0

m6 S2 1

m7 0 1

m8 1 1

m9 0 2

m10 2 2

Location of the 10 original demand points in the environmental space defined by

the two environmental factors.
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Step 0: Create the distance matrix.

We calculate the triangular matrix of distances among

sites. In this case, we use the squared Euclidean distance

Dk,l = (F1k � F1l)
2 + (F2k � F2l)

2 to calculate the triangular matrix

of distances.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

m1 0

m2 4 0

m3 10 2 0

m4 5 5 5 0

m5 20 8 2 9 0

m6 9 13 13 2 17 0

m7 13 9 5 2 5 4 0

m8 18 10 4 5 2 9 1 0

m9 20 16 10 5 8 5 1 2 0

m10 32 20 10 13 4 17 5 2 4 0

And then we convert it into a square matrix.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

m1 0 4 10 5 20 9 13 18 20 32

m2 4 0 2 5 8 13 9 10 16 20

m3 10 2 0 5 2 13 5 4 10 10

m4 5 5 5 0 9 2 2 5 5 13

m5 20 8 2 9 0 17 5 2 8 4

m6 9 13 13 2 17 0 4 9 5 17

m7 13 9 5 2 5 4 0 1 1 5

m8 18 10 4 5 2 9 1 0 2 2

m9 20 16 10 5 8 5 1 2 0 4

m10 32 20 10 13 4 17 5 2 4 0

A.1. Stage 1: first selection

Step 1: Calculate the p-median scores for each candidate area

mi. To do this, we calculate the distance of each

unselected demand point to the set of formerly chosen

sites (S), andthen wecreatea matrixof thedm,sdistances

that allmd unselected demand points would have to the

set of selected sites if each candidate demand pointmi is

included in the set of selected areas (S + mi).

� Step 1a: Calculate the distances dd,S to the previously

selected sites.

For each unselected demand point md the distances to all Ss
sites included in the selected set are calculated, and the

minimum of these distances is selected, since this it is the

distance to the nearest site Ss in the selected set.

For all md : dd;S ¼MINðdistðmd; S1Þ; . . . ;distðmd;SsÞ

Obviously, if there are no selected sites in the first selection

this step is not necessary.

� Step 1b: Calculate the matrix of distances dm,s between the

unselected sites and the hypothetical sets of selected sites

that will appear if each of the candidate sites would be

incorporated to the selected set.

The distance of each unselected demand point md when

the candidate demand point mi is included in the selected set

of areas is calculated as the minimum of dd,S and the distance

between md and mi, assuming that the distance dm,S between

the site md and the new set of sites (S + mi) is different from dd,S
only when the site mi is placed nearer to md than any of the Ss
previously selected sites.

For each cell d; i in the matrix : dm;s

¼MIN½dd;S; distðmd;miÞ�

In the first step, the matrix of dm,s is equal to the original

matrix of distances.

� Step 1c: Calculate the p-median score for each candidate

demand point.

The p-median score for each candidate pointmi is simply the

sum of all its dm,s distances to the rest of unselected points md.

For each demand point miðcolumn I in the matrixÞ

: p�mediani ¼ SUMðcell1;i : celld;iÞ

For example, for the demand point m1, p-med-

ian1 = 4 + 10 + 5 + 20 + 9 + 13 + 18 + 20 + 32 = 131.

p-Median

m1 131

m2 87

m3 61

m4 51

m5 75

m6 89

m7 45

m8 53

m9 71

m10 107

Step 2: Select one site from the p-median scores.

Once the p-mediani scores for all mi candidate sites are

calculated, the criteria for selecting a site is to minimize

such sum of distances. To do this, one site is randomly

chosen from all the sites included in the confidence interval
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defined by the minimum p-median score and their standard

deviation.

For all p-mediani, select those included in the interval [MIN

p-mediani, (MIN p-mediani) + (SD MIN p-mediani)].

In this case, the minimum p-median score is 45 (site m7),

and the standard deviation of all p-median scores is 27.1.

Therefore, the five sites with p-median scores between 45 and

72.1 are selected (m3, m4, m7, m8 and m9).

From these cells, select one at random.

In this case, m8 is selected during a random selection (note

that the size of the interval can be reduced for highly dispersed

data, or even be reduced to include only the candidate sites

with the minimum p-median score. However, given the sub-

optimality of the greedy algorithms and the possible uncer-

tainty in the original environmental data, including a

confidence interval is always desirable).

A.2. Stage 2: second selection

Once a given candidate site has been selected (in this case,

m8) the algorithm goes back to the step 1.

� Step 1a: In this case, these are the distances from all

remaining md cells to m8.

dd,S

m1 18

m2 10

m3 4

m4 5

m5 2

m6 9

m7 1

m8 n.a.

m9 2

m10 2

n.a.: not applicable.

� Step 1b: Here, the matrix of distances is re-calculated taking

into account the distance to the previously selected site m8.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

m1 0 4 10 5 18 9 13 n.a. 18 18

m2 4 0 2 5 8 10 9 n.a. 10 10

m3 4 2 0 4 2 4 4 n.a. 4 4

m4 5 5 5 0 5 2 2 n.a. 5 5

m5 2 2 2 2 0 2 2 n.a. 2 2

m6 9 9 9 2 9 0 4 n.a. 5 9

m7 1 1 1 1 1 1 0 n.a. 1 1

m8 0 0 0 0 0 0 0 n.a. 0 0

m9 2 2 2 2 2 2 1 n.a. 0 2

m10 2 2 2 2 2 2 2 n.a. 2 0

n.a.: not applicable.

� Step 1c: The p-median scores for all mi candidate points

are calculated (in this case all but the previously selected

m8).

p-Median

m1 29

m2 27

m3 33

m4 23

m5 47

m6 32

m7 37

m8 n.a.

m9 47

m10 51

n.a.: not applicable.

Step 2: Now, the minimum p-median score is 23 (site m4), and

the standard deviation of all p-median scores is 9.9, so

the four sites with p-median scores between 23 and

32.9 are pre-selected (m1, m2, m4 and m6). From these,

m4 is randomly chosen.

A.3. Stage 3: third selection

� Step 1a: in this case, these are the minimum of the distances

from all remaining md cells to either m4 or m8.

dd,S

m1 5

m2 5

m3 4

m4 n.a.

m5 2

m6 2

m7 1

m8 n.a.

m9 2

m10 2

n.a.: not applicable.

� Step 1b:

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

m1 0 4 5 n.a. 5 5 5 n.a. 5 5

m2 4 0 2 n.a. 5 5 5 n.a. 5 5

m3 4 2 0 n.a. 2 4 4 n.a. 4 4

m4 0 0 0 n.a. 0 0 0 n.a. 0 0

m5 2 2 2 n.a. 0 2 2 n.a. 2 2

m6 2 2 2 n.a. 2 0 2 n.a. 2 2

m7 1 1 1 n.a. 1 1 0 n.a. 1 1

m8 0 0 0 n.a. 0 0 0 n.a. 0 0

m9 2 2 2 n.a. 2 2 1 n.a. 0 2

m10 2 2 2 n.a. 2 2 2 n.a. 2 0

n.a.: not applicable.
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localización de instalaciones y equipamientos. Ra-Ma,
Paracuellos del Jarama, Madrid, 353.

New, M., Hulme, M., Jones, P.D., 2000. Representing twentieth
century spacetime climate variability. Part 2. Development
of 1901–96 monthly grids of terrestrial surface climate. J.
Climate 13, 2217–2238.
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Whittaker, R.J., Araújo, M.B., Jepson, P., Ladle, R.J., Watson,
J.E.M., Willis, K.J., 2005. Conservation Biogeography:
assessment and prospect. Divers. Distrib. 11, 3–23.

Whittaker, R.J., Nogués-Bravo, D., Araújo, M.B., 2007. Geographic
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