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ABSTRACT

 

Different distribution maps can be obtained for the same species if localities where
species are present are mapped at different times. We analysed the accumulation of
information over time for a group of dung beetle species in the Iberian Peninsula.
To do this, we used all available information about the distribution of the group as
well as data on selected species to examine if the process of discovery of species
distribution has occurred in a climatically or spatially structured fashion. Our results
show the existence of a well-defined pattern of temporal growth in distributional
information; due to this, the date of capture of each specimen can be explained by the
environmental and spatial variables associated to the collection sites. We hypothesize
that such temporal biases could be the rule rather than the exception in most distribu-
tional data. These biases could affect the weighting of environmental factors that
influence species distributions, as well as the accuracy of predictive distribution
models. Systematic surveys should be a priority for the description of species
geographical ranges in order to make robust predictions about the consequences
of habitat and climate change for their persistence and conservation.
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INTRODUCTION

 

Although the records comprising species distribution maps

often differ in spatial resolution, the overall geographical distribu-

tion of organisms is generally symbolized by dots of equal size

(area of occupancy) or by continuous patches covering the area

of all known presence sites (extent of occurrence; see Rapoport,

1982; Gaston, 1991; or Burgman & Fox, 2003). Different distribu-

tion maps can be obtained if the localities where a species has

been recorded are represented at different times. These temporal

changes in species ranges could be due to (i) the specific popula-

tion dynamics of the species (Hengeveld, 1990; Parmesan

 

et al

 

., 2005) and (ii) the influence of environmental changes

(Thomas & Lennon, 1999; Parmesan & Yohe, 2003). However,

these changes could also be (iii) erroneous representations

resulting from the existence of a defined spatial pattern in the

newly added distributional information. It is well known that

geographical ranges enlarge as sampling effort increases (Gaston,

2003). However, as far as we know, no study has yet analysed

the variation in geographical representations of species as distri-

butional information increases, i.e. the growth of distribution

maps over time.

While new presences are being recorded during a given period,

information on the distribution of a given species could accumulate

either in a random or in a spatially structured fashion (assum-

ing that its range is relatively stable within such period). If

knowledge increases at will, the probability of surveying a

given site would not be conditioned by the spatial position of

previously sampled sites; as a result, the ‘true’ distribution of species

would be gradually and uniformly revealed across the whole

area, and discoveries of new presence sites would generally only

sharpen the observed pattern rather than modify it. Of course, in

the first survey stages, a random placement of sampling sites can

imply an expansion of the known area of distribution, but such

expansion must quickly reach a maximum. However, if surveys

occur in a spatially structured fashion, the derived distribution

maps would differ with time, and the ‘true’ distribution would

not be homogenously revealed across the territory. Such a bias

can be produced by the influence of the environmental and/or

geographical characteristics of the sites on survey site allocation

and/or by several sociological factors (see, e.g. Dennis & Thomas,

2000). In the first scenario, the information on the species range

will be independent of the moment of time when the maps are

created, while in the second it would not.
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Many studies have explored the environmental and geographical

determinants of species distributions (see, e.g. Rahbek & Graves,

2001; Ricklefs, 2004; Field 

 

et al

 

., 2005; or Hawkins 

 

et al

 

., 2005);

many others have elaborated hypotheses on the potential or ‘real’

distribution of species based on environmental explanatory

variables (see Brotons 

 

et al

 

., 2004; Engler 

 

et al

 

., 2004; Iverson 

 

et al

 

.,

2004; Soberón & Peterson, 2005). However, others have recognized

that available species distribution information is influenced by

uneven sampling and by recorder bias (Dennis 

 

et al

 

., 1999;

Dennis & Thomas, 2000; Zaniewski 

 

et al

 

., 2002; Reutter 

 

et al

 

., 2003;

Graham 

 

et al

 

., 2004; Martínez-Meyer, 2005; Romo 

 

et al

 

., 2006;

Hortal 

 

et al

 

., in press). The potential effect of such a bias on (i)

the growth of distribution knowledge, (ii) the relative weighting

of environmental factors affecting species distributions, and

(iii) the accuracy of predictive distribution models is yet to be

examined. Indeed, current knowledge of species distributions

is not usually complete; uneven discovery processes could reveal

erroneous spatial patterns that might result in unreliable predictive

distribution models.

In this paper, we study the spatial pattern of the growth of

distributional information for a dung beetle family (Coleoptera,

Scarabaeidae) in the Iberian Peninsula. We use all the available

information about the distribution of Scarabaeidae species as

whole, as well as specific information on the most recorded

species. After describing the temporal variation in the number of

database records and collected species, we specifically examine if

the geographical variation in the year of each database record

can be explained by spatial or climatic variables. In that case, the

temporal growth of the information about the distribution of

Iberian Scarabaeidae has occurred following a biased pattern.

Our null hypothesis is that the year of collection of each database

record is randomly distributed across spatial and climate gradients,

so the species distribution maps produced over time provide

unbiased cartographic representations of the true distribution

of dung beetle species. The null hypothesis will be rejected

if a meaningful and statistically significant relationship

between the year of collection and the spatial or climate variables

is found.

Two other different (and unrelated) processes can also explain

such spatially structured collection process: (i) the tendency of

taxonomists to collect rare species, and (ii) the climate change

during the last century (Watson & the Core Writing Team, 2002).

Since rare species are more interesting for taxonomists, the localities

hosting these species could be expected to be sampled earlier

and, comparatively, more thoroughly. We test this hypothesis by

examining if the geographical rarity of species is related with

their yearly rate of increase in the number of database records.

On the other hand, if any detected spatial and/or environmental

patterns were due to climate change-driven range shifts instead

of sampling bias, it should be expected that geographical range

shifts would differ according to the particular climatic adapta-

tions of species. In a warming scenario, warm-adapted species

would increase their ranges, while cold-adapted species

would diminish them. After analysing these questions we

highlight the implications of survey biases for the study of

species distributions.

 

METHODS

 

The information on the distribution of Scarabaeidae species

comes from BANDASCA (Lobo & Martín-Piera, 1991). This

database compiles all available taxonomic and distribution

information from museums, private collections, published and

unpublished data for each of the 53 Scarabaeidae dung beetle

species known to inhabit the Iberian Peninsula (Martín-Piera,

2000). Each database record contains information on the pool of

specimens of a single species with identical database field values:

site, elevation, date of capture, type of habitat and food source

(see Martín-Piera & Lobo, 2003). All locality data have been

correctly georeferenced at a 10 

 

×

 

 10 km UTM resolution. At

present, this database has 13,570 records with known year of

collection, which extend from 1872 to 2001. The year of recording

was used as the dependent variable to describe the process of the

growth in knowledge of dung beetle distribution.

Several spatial and climate variables (see below) were used as

possible predictors of this process. Broad-scale spatial structure

in the year of collection was described by means of the nine terms

of a third degree polynomial of the central latitude (Lat) and

longitude (Lon) of each 100 km

 

2

 

 UTM cell (Trend Surface

Analysis or TSA; see Legendre & Legendre, 1998). TSA yields an

estimate of the large-scale trends in a spatially distributed dependent

variable, using a regression analysis of the dependent variable

to separate systematic variation (i.e. explained by the spatial

variables) from random variation (due to measurement error or

to the effect of other variables not included in the analysis).

Latitude and longitude were standardized to 0 mean and 1

standard deviation.

The climate variables used as predictors were the seasonal

precipitation scores and maximum, minimum, and mean

temperatures (16 climate variables). These variables were provided

by the Spanish Instituto Nacional de Meteorología and the

Portuguese Instituto de Meteorologia and were handled using the

 

 

 

 software (Clark Labs, 2003). Their scores at

each 100 km

 

2

 

 UTM square in the Iberian Peninsula (

 

n

 

 = 6063)

were extracted, normalized and standardized (to 0 mean and 1

standard deviation) and then submitted to a Principal Component

Analysis (PCA) to obtain uncorrelated factors (Varimax rotation).

The two first climate factors extracted with the PCA were able to

explain 69% and 22% of total climate variability, respectively;

the first factor characterizes a Mediterranean gradient, with high

positive loadings (> 0.8) of spring, winter, and autumn tempera-

tures. The second factor identifies an aridity gradient with high

and negative loadings for spring, winter, and autumn rainfall and

positive ones for maximum summer temperatures (not shown).

The broad-scale structure in the year of collection related to

environmental variables was assessed by regressing it against the

two above-mentioned PCA factors, selecting the statistically

significant terms (p to enter and p to remove = 0.05; intercept

included) by a standard stepwise backward regression procedure

using generalized linear models (normal distribution of errors

and a logarithmic link function between the dependent and

predictors). To account for curvilinear relationships, the quadratic

and cubic functions of each PCA climate factor and the interaction



 

J. M. Lobo 

 

et al.

 

© 2007 The Authors

 

774

 

Diversity and Distributions

 

, 

 

13

 

, 772–780, Journal compilation © 2007 Blackwell Publishing Ltd

 

term between both of them were included in the regression

model (see Austin, 1980). In a spatially structured environment,

nearby localities tend to have similar environmental conditions,

so a spatially structured pattern can be explained at the same

time by different processes making it difficult to discern causa-

tion from correlation patterns (Wagner & Fortin, 2005).

However, these concerns do not affect to our study; we only

aim to determine if the year of collection can be described using

environmental or spatial variables, without assuming any causal

relationships.

Most dung beetle species were recorded fewer than 200 times

(33 species; 61% of total species) with a mean (± SE) number of

database records per species of 251 ± 39. The regression models

were calculated for all species included in BANDASCA altogether

and also individually for each of the 14 species with a number of

database records above the upper quartile boundary (361

database records). The 

 



 

 package (StatSoft, 2003) was

used for all computations.

 

RESULTS

Temporal variation in sampling effort

 

The mean number of database records per year was 105 ± 19

(mean ± SE), but this figure fluctuates widely over the period of

time considered. The rate of Iberian dung beetle information

increases considerably from the 1970s onwards (371 ± 61 database

records per year), reaching its maximum in the 1980s and sub-

sequently declining until the present (Fig. 1). Only 343 database

records were available before 1900 (2.5% of the total), and in

the following 70 years, the number of database records reached

only 2424 (17.9% of the total). The peak in the number of

database records per year occurs in the year 1980, roughly the

year when the last Scarabaeidae species was added to the Iberian

inventory, which reached a plateau (Fig. 1). The number of

database records per year is positively correlated with the number

of collected species (Spearman rank correlation coefficient; 

 

r

 

s

 

 =

0.968, 

 

P

 

 < 0.001). This implies that increases in sampling effort

lead to increases in the number of recorded species.

The geographical pattern of variation in the year of collection

can be exemplified by the case of 

 

Onthophagus (Palaeonthophagus)

fracticornis

 

 (Fig. 2). The observed distribution range of this

species has been gradually increasing. At the 1930s, the species

was only known from some isolated nuclei, mainly placed in the

periphery of its actual distribution. The gaps in such distribution

have been progressively filled during the twentieth century, and

now the species is known to occur in most Iberian mountain

ranges, showing a more continuous distribution range.

 

Spatial and climatic bias

 

The geographical variation in the year of each database record

seems to be spatially structured (Fig. 3a); the oldest citations are

restricted principally to the north-eastern Iberian corner, and, to

a lesser extent, to the southern and western limits of the Iberian

Peninsula. The existence of a spatial pattern is confirmed by

TSA results (Fig. 3b). Seven of the nine terms of a third degree

polynomial of latitude and longitude remained significant in a

backward stepwise analysis: the three terms of the cubic function

of longitude, latitude, the interaction between latitude and

longitude, and the two other interaction terms (latitude

 

2

 

 

 

×

 

 longitude

and longitude

 

2

 

 

 

×

 

 latitude). A function of these seven terms explains

18.6% of the variation in the year of database records. Climate

variables explain around 13.1% of the variation in the year of

database records (quadratic function of the first PCA climate

factor and cubic function of the second PCA climate factor).

Figure 1 Yearly variation in the number of 
database records (shaded area) and number of 
collected species (squares) in the BANDASCA 
database, which compiles all available 
information on Iberian dung beetles. Circles 
represent the number of species accumulated 
in the Iberian inventory.
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Figure 2 Increase over time and geographical 
changes in the known distribution area of 
Onthophagus fracticornis in the Iberian 
Peninsula. The database records gathered in 
four consecutive time periods are represented 
by plots of decreasing shades of grey and 
increasing sizes: before 1930 (black dots), 
from 1931 to 1960 (dark grey, small circles), 
from 1960 to 1980 (medium grey, bigger 
circles), and from 1981 to 2000 (light grey, 
biggest circles).

Figure 3 Spatial distribution of the year of 
collection in BANDASCA database records, 
according to (a) the original data (only the first 
year of collection at each 100 km2 square is 
shown), and (b) the scores predicted by a 
Trend Surface Analysis.
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Adding these climate factors to the spatial terms does not lead to

a better explanatory function.

The year of database records of the 14 most recorded species

can also be jointly explained by spatial and climate variables,

accounting for 22.0% and 5.4% of total variability, respectively.

The explanatory capacity of spatial variables for each one of these

14 species ranges from 15.1% to 44.6% (28.3% ± 2.5), and from

3.5% to 32.6% in the case of climate variables (11.5% ± 2.1; see

Table 1). Thus, spatial variables seem to account for a significantly

higher percentage of temporal variability (Wilcoxon matched

pairs test = 3.29; 

 

n

 

 = 14; 

 

P

 

 < 0.001), although the percentages of

variability explained by both kinds of variables are positively

correlated (Spearman rank correlation test; 

 

r

 

s

 

 = 0.67; 

 

n

 

 = 14;

 

P

 

 < 0.01).

 

Rarity and survey effort

 

The temporal variation in the accumulated number of database

records for these 14 species (Fig. 4) indicates that the yearly rate

of increase in the number of database records is generally slow

before 1975, increasing noticeably after this date (see Table 1).

However, both rates are uncorrelated (

 

r

 

s

 

 = 0.10; 

 

n

 

 = 14; 

 

P 

 

= 0.74).

Before 1975, the number of UTM squares where each species

was observed is only slightly correlated with the rate of increase

in database records (

 

r

 

s

 

 = 0.45; 

 

n

 

 = 14; 

 

P 

 

= 0.10); however, after

that date these two figures are highly and positively correlated

(

 

r

 

s

 

 = 0.78; 

 

n

 

 = 14; 

 

P 

 

= 0.001). Interestingly, although the number

of UTM squares in which each species was observed is not

correlated with the variability explained by spatial bias (

 

r

 

s

 

 = –0.44;

 

n

 

 = 14; 

 

P 

 

= 0.12), it is negatively correlated with the climatic bias

(

 

r

 

s

 

 = –0.72; 

 

n

 

 = 14; 

 

P 

 

= 0.003).

 

Climatic adaptations and survey effort

 

The mean annual temperature for the UTM cells in which each

species was observed (Table 1) is not significantly correlated with

the magnitude of the spatial or climatic bias (

 

r

 

s

 

 = –0.32 

 

n

 

 = 14;

 

P 

 

= 0.26 and 

 

r

 

s

 

 = 0.17; 

 

n

 

 = 14; 

 

P 

 

= 0.55, respectively). Therefore,

the observed biases are not related to possible climate change-

driven shifts in species distributions.

 

DISCUSSION

Temporally changing biases in Iberian dung beetle 
data

 

According to our results, survey effort seems to follow a defined

pattern both in time and in space. The amount of collection

effort varies over time; most collections have been made once

taxonomic knowledge is almost complete (around the year 1975),

probably because this knowledge facilitates the gathering of

faunistic information. The surveys of Iberian dung beetles also

follow a well-defined spatial pattern; the earliest faunistic studies

were carried out in Portugal and Catalonia, while the inner

Iberian Peninsula was sampled later. Such temporal patterns

in the areas chosen by taxonomists produce an evident spatial

structure in collection dates (see Fig. 2). Nearby sites usually

yield similar collection dates, probably because each taxonomist

tends to sample only in a limited territory (see Dennis 

 

et al

 

., 1999).

Interestingly, when the information available for each species is

analysed separately, sampling bias is more evident than when

data on all species are studied together. We suspect that this fact is

due to the masking effect of overlaying and analysing information

Table 1 Number of database records (N records) in BANDASCA (a database on the distribution of Iberian dung beetles), number of 10 × 10 km 
UTM cells in which each species has been observed, and percentage of deviance explained by the third-degree polynomial of central latitude and 
longitude (Trend Surface Analysis, Legendre & Legendre, 1998), and by the two main Principal Component Factors that represent the climate 
variation across the Iberian 100 km2 UTM cells. AMT is the annual mean temperature of the UTM cells in which each species was observed 
(± 95% confidence interval), while the last two columns are the yearly rate (± SD) of database increase before (< 1975) and after 1975 (> 1975).

Species

N 

records

N UTM 

cells

Spatial 

variables

Climate 

variables AMT < 1975 > 1975

Onthophagus (Onthophagus) taurus (Schreber, 1759) 1239 170 17.11% 3.51% 13.61 ± 0.26 2.57 ± 0.11 36.68 ± 2.01

Onthophagus (Palaeonthophagus) similis (Scriba, 1790) 1121 128 15.15% 6.31% 11.95 ± 0.29 1.21 ± 0.04 38.80 ± 2.54

Onthophagus (Palaeonthophagus) vacca (Linnaeus, 1767) 903 148 24.02% 7.14% 13.31 ± 0.29 0.76 ± 0.03 31.53 ± 2.22

Onthophagus (Furconthophagus) furcatus (Fabricius, 1781) 870 134 30.46% 11.10% 13.46 ± 0.27 2.57 ± 0.11 36.68 ± 2.01

Euoniticellus fulvus (Goeze, 1777) 801 121 29.48% 5.78% 13.32 ± 0.34 0.92 ± 0.03 24.50 ± 1.97

Bubas bubalus (Olivier, 1811) 596 101 34.01% 17.22% 14.31 ± 0.32 0.58 ± 0.01 16.87 ± 2.05

Caccobius schreberi (Linnaeus, 1767) 529 110 23.11% 4.32% 12.88 ± 0.34 0.94 ± 0.02 15.78 ± 1.48

Copris lunaris (Linnaeus, 1758) 512 86 32.71% 8.57% 11.94 ± 0.30 1.22 ± 0.03 12.10 ± 1.61

Copris hispanus (Linnaeus, 1764) 511 109 20.27% 9.57% 15.45 ± 0.25 0.74 ± 0.01 16.71 ± 1.25

Euonthophagus amyntas (Olivier, 1789) 482 108 43.91% 11.36% 13.20 ± 0.36 1.57 ± 0.07 10.96 ± 1.31

Bubas bison (Linnaeus, 1767) 436 81 20.88% 10.85% 15.96 ± 0.23 0.48 ± 0.01 16.57 ± 1.23

Onthophagus (Palaeonthophagus) fracticornis (Preyssler, 1790) 429 76 44.63% 32.63% 10.42 ± 0.43 1.28 ± 0.05 12.03 ± 1.05

Onthophagus (Parentius) punctatus (Illiger, 1803) 363 86 38.14% 21.46% 13.71 ± 0.41 0.62 ± 0.01 11.90 ± 0.73

Onthophagus (Palaeonthophagus) opacicollis (Reitter, 1892) 361 77 21.94% 11.83% 14.47 ± 0.41 0.17 ± 0.01 15.25 ± 0.56
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about species with different kinds of climatic tolerances and

distributions (see Table 1).

The spatial structure in collection dates is a consequence of the

variation over time of the geographical and/or climatic condi-

tions of the areas chosen by taxonomists for their surveys. Due to

these temporal biases, the differences in collection dates between

coastal and inland localities are also reflecting one of the main

environmental gradients of the Iberian Peninsula (i.e. precipita-

tion is lower and temperatures much warmer at the hinterland

than at the coast). Despite this, climate variables explain on

average a lower percentage of variability in the year of collection

than spatial variables, and they do not add any explanatory power

to the TSA function. This indicates that differences in sampling

effort over time are not a response to climate conditions 

 

per se

 

;

instead, they are the result of sociological and scientific processes

related to variations in the preferences and goals of specialists

over time (Martín-Piera & Lobo, 2003).

The inclination of taxonomists to collect rare species could

also stand as a partial explanation of the observed temporal

bias. The most geographically rare species have received a more

intense survey effort after 1975; as a result, the effort devoted to

each individual species before and after such date is uncorrelated.

Recent taxonomists have changed their collection trends, seeking

rarer species in places that are climatically and spatially far away

from classic localities. As a result, the known distribution range

of all species has increased. Here, we can discard the alternative

hypothesis of climate change having a significant effect on the

detected temporal trend, since the temporal biases in survey

effort are uncorrelated with the climatic adaptations of the

species); warm-adapted species do not increase their ranges

more than cold-adapted ones.

If dung beetles are one of the most-studied insect groups in the

Iberian Peninsula, why is the information about their distribu-

tion so poor and biased yet? The most obvious explanation is that

taxonomists do not have the resources to survey everywhere

and also that their efforts will always be biased in some way. The

community of Iberian dung beetle specialists has not given

a high priority to the development of accurate atlases while

‘planning’ their faunistic effort. On the contrary, they tend to

survey areas close to their residences or in particularly interesting

territories (see Dennis & Thomas, 2000), as they are more interested

in collecting remarkable or rare species than in offering a com-

prehensive picture of the distribution of a group of organisms in

a territory (Soberón & Peterson, 2004). Some sources of bias in

historical surveys (e.g. recorder’s home-range or repeated

sampling in several classical localities) are likely to be common in

most groups. We suspect that the drawbacks in the distributional

information currently at hand highlighted by the example of

the Iberian dung beetles are likely to be the rule rather than the

exception for other groups and regions. Therefore, the process of

unravelling species distributions over time should be considered

as an unstandardized sampling protocol that is conducted by

several specialists with often unrelated aims, and that results in

spatially structured information.

 

The effect of survey biases on distributional 
hypotheses

 

Species distribution ranges are difficult to define because they

change spatially and temporally, particularly at their borders

(Parmesan 

 

et al

 

., 2005). Furthermore, it is sometimes difficult to

decide when a species is present at a site, not to mention when it

is truly absent. Should those unsuitable sites where the species

has been collected but is unable to persist in the absence of

continued immigration be considered presence plots? (Pulliam,

1988, 2000). How should these records be classified and incorpo-

rated into distribution maps? If some collected specimens of

a species can be accurately designated as ‘dead alive’ or ‘vagrants’

(Gaston, 2003), is it worth to incorporate their information as

an indication of the location of its distribution edge? In the same

way, although we can define the sites in which a species is truly

absent, it is necessary to consider that only a fraction of suitable

sites are occupied due to metapopulational dynamics and dispersal

limitations (Pulliam, 2000). As a result, mapped distributions

should be considered as probabilistic maps with an unknown

degree of uncertainty.

These problems are inherent to the delimitation of geographical

ranges, but are aggravated as consequence of the gaps in the data.

Figure 4 Accumulated increase over time of 
the number of database records in BANDASCA 
for the 14 most recorded species (i.e. those 
with a number of database records above 
the upper quartile boundary, 361 database 
records). The species are ordered in the right 
column according to the total number of 
10 × 10 km UTM cells in which each species 
was observed (see Table 1).
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Many different modelling techniques have been proposed to

fill in these gaps by interpolating and extrapolating the known

distribution to the territories without enough biological

information (see Elith 

 

et al

 

., 2006). Typically, these techniques

provide statistically derived distribution hypotheses using

climatic and spatial predictors. Although these hypotheses could

be used in the (common) absence of exhaustive data, modelling

techniques need data of relatively good quality to produce

reliable hypotheses. Could the temporally structured bias in

the recording process be affecting the reliability of predicted

distributions?

Our results show that the differences between distribution

maps taken at different time points are climatically and spatially

biased. Therefore, regardless of the origin of sampling biases, the

representation of the environmental gradients by the surveyed

localities will differ over time. This compromises the reliability

and comparability of the distributional hypotheses developed from

these variables (e.g. predictive models or range shift assessments).

Therefore, ignoring the effects of the spatial bias in historical

sampling could lead to misleading conclusions about the role of

climate change in distributional changes; spurious increases in

species distribution ranges produced by new surveys in previously

unsampled areas could be erroneously attributed to climate-

related changes, complicating the task of assessing the effects of

global warming on biodiversity. Temporally changing spatial

and environmental biases in survey effort also hinder the process

of forecasting the distribution of a species using the fragmentary

data at hand. If the absence of a species is erroneously assigned

to places where the species is present (i.e. false absences) within

specific environmental conditions it is possible to obtain

apparently reliable (but erroneous) distribution hypotheses,

given that false absences will be spatially and climatically

structured. Therefore, if the biases in biological data are related

to the spatial and environmental variables used as predictors, the

resulting predictive models will present a good fit to the data but

lack biological accuracy.

Given that the spatial structure of the temporal growth in the

information about the distribution of species may affect the

reliability of distributional hypotheses, is necessary to incorporate

some methods to assess and enhance data quality in the study of

species distributions; this stands for both range shift assessments

and predictive models. Unfortunately, the environmentally and

spatially biased presence data compiled in most of the exhaustive

databases currently available present important gaps and biases

(see Hortal 

 

et al

 

., 2007). Therefore, an assessment of the quality

of the information is central to the use of data coming from

historical surveys and collections (Hortal 

 

et al

 

., 2001, 2004; Lobo

& Martín-Piera, 2002; Hortal & Lobo, 2005; Romo 

 

et al

 

., 2006).

In most cases, it would be necessary to gather supplementary

data in a standardized fashion, with the aim to represent all

environmental and spatial variability of the territory (see

Kadmon 

 

et al

 

., 2004; Hortal & Lobo, 2005); comprehensive

analyses of previous survey efforts can help to identify well-surveyed

sites as well as to locate additional sites to be surveyed (Margules

& Pressey, 2000; Hortal & Lobo, 2005). Apart from additional

surveys, the reliability of predictive models could also be improved

from some additional work on the detection and effects of

false absences. On the one hand, absence sites with a high degree

of certainty can be derived from the sites identified as well-surveyed

(i.e. sites in which the amount of sampling effort is so high that it

is unlikely that the species is present but remains unnoticed).

On the other, specific studies of the effect of spatially structured

false absences would help to identify the effects produced by

biased unstandardized surveys on the estimation of geographical

determinants of species distributions and the accuracy of predic-

tive models.

The value of biodiversity studies and applications of the

information historically gathered by naturalists is well under-

stood (see Soberón & Peterson, 2004; Graham 

 

et al

 

., 2004; Suarez

& Tsutsui, 2004). However, the biases in this information could

be compromising the conservation assessments and hypotheses

developed using these data. Therefore, analyses of the quality,

temporal bias and spatio-environmental coverage of the informa-

tion should be a preliminary step in any protocol intended to

take advantage of the information gathered in biodiversity

databases. Additional surveys that fill in the environmental and

spatial gaps in data will be frequently needed. Predictive models

coming from data improved after these assessment and sampling

processes will constitute much more reliable hypotheses of species

distributions, though coming from incomplete data.
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