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A three-step protocol described elsewhere is used to obtain a map of butterfly species
density in Portugal on a 50�/50 km grid. First, all available faunistic information was
compiled and analysed to explore the historic patterns of butterfly sampling in
Portugal, and to determine which grid cells are sufficiently prospected to produce
reliable estimates of species richness. Then, we relate the estimated species richness
scores from these areas to a set of environmental and spatial variables by means of
General Linear Models, obtaining a function to extrapolate of species density scores to
the rest of Portugal. Finally, the model is validated, results explored and outliers
identified and deleted. Any spatial autocorrelation remaining in the residuals is
examined. Lastly, model parameters are recalculated in absence of deleted outliers, and
the resulting function is used to predict species richness scores throughout mainland
Portugal. A highly-predictive function based on some variables previously related to
butterfly composition at macro-scale, such as number of sunny days per year,
temperature or environmental heterogeneity, was obtained. However, in Portugal
those variables are highly spatially structured along a steep latitudinal gradient, leading
to difficulty in ascertaining if the latitudinal gradient detected by our analysis is due to
macroecological or historic effects. Information on European and Iberian butterfly
assemblages and causal processes are discussed in the light of the patterns observed.
Then, previous information obtained on Portuguese scarabs is added to identify
conservation areas, biogeographically important for both insect groups. Finally, the
main drawbacks and advantages of this approach to mapping biodiversity for
conservation are discussed briefly.
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The design of effective conservation policies requires a

detailed knowledge of the spatial distribution of

organisms (Miller 1994, Dennis and Williams 1995).

Computing tools and information-storage systems, facil-

itating 1) the selection of biodiversity hotspots within

national territories, and 2) the identification of sets of

areal units that would maximise the number and

diversity of effectively protected species (e.g. Araújo

1999), can help in the design of protected-area networks

effective for all species within the territory considered.

However, even after �/250 yr of accumulating dis-

tribution and taxonomic data, there is no complete

inventory of all organisms inhabiting any single locality.

The spatial distribution of the majority of the species, is

yet unknown, as is their total number (Purvis and

Hector 2000). After pioneering experiences in countries

such as the United Kingdom (Lawton et al. 1994,

Griffiths et al. 1999), obtaining and compiling of

distributional information on large databases has re-

ceived strong international support in the form of the
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Global Biodiversity Information Facility (GBIF; see

B/http://www.gbif.org�/ and Edwards et al. 2000).

Although the rate of creation of such databases is

accelerating, the information gathered is still scarce

and in the Mediterranean region is biased to certain

countries and regions (Dennis and Williams 1995,

Ramos et al. 2001).

Fortunately, computational power provided by perso-

nal computers, statistical packages and available high-

quality environmental GIS information (Johnston 1998)

facilitate analyses of distributional information. Spatial

distribution models for biodiversity could help compen-

sate, quickly and economically, for our present lack of

knowledge (Scott 1998, Lobo 2000). Models of biodi-

versity attributes (such as species richness or rarity),

obtained from data gathered from well-inventoried

areas, can predict scores for sites where faunistic or

floristic knowledge is poor (Hortal and Lobo 2002).

Hortal et al. (2001) used data from the Iberian species

of a dung beetle family (Coleoptera, Scarabaeinae) to

identify the squares of the UTM 50�/50 km grid with

reliable inventories within mainland Portugal. Next, they

used several environmental and spatial variables (lati-

tude and longitude), to obtain a predictive model for

species richness per grid square (i.e. species density) and

extrapolated the scores for the rest of Portugal. In this

study, we present an improved version of this procedure,

following the standard protocol defined elsewhere (Hor-

tal and Lobo 2002). This protocol is applied here to

model butterfly (Lepidoptera, Papilionoidea and He-

speriidae) species richness across mainland Portugal.

More precisely, our aims are to: 1) determine the

spatial distribution, based on current knowledge, of

Portuguese butterflies, and identify areas that need

further inventory effort, 2) produce a map of predicted

species richness for Portuguese mainland butterflies.

Subsequently, the results for Portuguese Scarabaeinae

(Hortal et al. 2001), based on the same procedures,

geographic units and location, are compared with those

derived for butterflies, in order to: 3) recommend

improvements in Portuguese regional conservation po-

licies based on species richness.

Finally, potential applications are discussed for maps

of predicted biodiversity, combined with accurate bio-

geographic and ecological knowledge, to large-scale

conservation planning.

Methods

The methods used to model the distribution of butterfly

species richness follow the protocol discussed in Hortal

and Lobo (2002). Briefly, they describe a consecutive

three-stage process: a) Compilation and analysis of

information, where: 1) available environmental and

biological information is stored, 2) working territorial

units are defined, 3) previously compiled information is

allocated to these units, 4) units with reliable inventories

are identified, and 5) biodiversity attribute (in this case,

species richness) scores are obtained from the latter areas

by studying the relationship between sampling effort and

prediction success. b) Model development, where envir-

onmental and spatial variables for each well-inventoried

territorial unit are related to species richness scores

through a stepwise regression procedure to obtain a

richness-score prediction function for the poorly-inven-

toried areas. c) Model validation, where model results

are explored to identify possible outliers, and the

predictive power of the model and the spatial distribu-

tion of its errors are identified.

Examples of the use of this protocol to predict the

spatial distribution of Scarabaeinae dung beetles in

different west Mediterranean areas can be found in

Hortal and Lobo (2001, 2002), Hortal et al. (2001),

Lobo and Martı́n-Piera (2002) and Lobo et al. (2002).

Compilation and analysis of information
Sources of data

The 51 50�/50 UTM grid squares within the Portuguese

mainland territory with a land surface of �/85% were

selected as working Territorial Units (hereafter, TUs)

(see Hortal et al. 2001; Fig. 1).

Distribution data about Portugese butterflies (records

of the presence of butterfly species) are mostly from

Garcia-Pereira (2003). This information was comple-

mented with similar data from ATLAMAR (Garcı́a-

Barros et al. unpubl.), a database on Iberian butterflies,

for squares along the Portuguese/Spanish border (see

Fig. 1). The data represent an exhaustive compilation on

butterfly faunistics across the study area, including both

literature records and unpublished information from

public and private collections. Information was extracted

Fig. 1. Map showing the 51 TUs (50 km width UTM squares)
in which we divided the Portuguese territory for this analysis
(see Hortal et al. 2001). TU numbers as in Table 1.
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for all individuals recorded in each TU. The data about

dung beetles referred to by Hortal et al. (2001) and used

for comparative purposes, came from BANDASCA, a

distributional database on the Iberian species of Sca-

rabaeine (see structure in Lobo and Martı́n-Piera 1991).

For each TU, predictors were taken to be the scores of

25 environmental and spatial variables (Table 2; see

Hortal et al. 2001 for details): eight climate variables

(minimum, maximum and mean annual temperature,

annual range of temperatures, number of days of sun per

year, mean annual rainfall, summer rainfall and annual

range of monthly rainfall); four topographic variables

(minimum, maximum and mean altitude, and altitude

range); three bedrock geology variables (amount of

surface covered by acid, limestone and clay-mineral

bedrocks); four land-use variables (amount of surface

covered by grassland, scrub, forest, and agricultural or

urban area); two environmental diversity variables (bed-

rock-geology diversity and land-use diversity); two

geographic variables (distance to Pyrenees and to each

TU land surface); and two spatial variables (latitude and

longitude of each TU centroid).

All variables were standardized to 0 means and unit

variances to avoid the effect of different measurement

scales, except for the case of latitude and longitude,

which were standardized to the mean as recommended

by Legendre and Legendre (1998).

Selection of Territorial Units with reliable information and

estimation of local species richness

We used collector’s curves to identify those units with

inventories complete enough so as to produce reliable

richness scores. These curves reflect the sampling effort

carried out in a given area, related to the rate at which

new species are added to the inventory (Soberón and

Llorente 1993, Colwell and Coddington 1994, León-

Cortés et al. 1998, Moreno and Halffter 2000, Gotelli

and Colwell 2001). Our butterfly distribution data comes

from heterogeneous sources (standardized samplings,

non-professional collectors, etc.), not amenable to a

single sampling effort unit; hence, it requires a surrogate

measure. We have taken the number of individuals

recorded in each TU as a surrogate of sampling effort,

because: 1) the number of individuals collected is directly

related to the sampling effort carried out (i.e. the greater

the effort, the more individuals captured), although this

relationship is not necessarily linear, and 2) it can be

applied to all records in our database.

The slope of the collector’s curve determines the rate

of species accumulation at a given level of sampling

effort. This slope diminishes as more sampling effort is

developed and new species are found, reaching 0 when

all species have been found. To determine the quality of

the inventory in each TU, we fitted the relationship

between the number of species inventoried and the

number of individuals collected. As the shape of this

relationship depends on the order in which the indivi-

duals were recorded, this order was randomized 100

times to obtain a smoothed ‘‘ideal’’ accumulation curve

(EstimateS 6.0 software package; Colwell 2000). We

compared the fit of the negative exponential function

and the Clench function to the smoothed data of all TUs

(Soberón and Llorente 1993, Colwell and Coddington

1994, Moreno and Halffter 2000). The Clench function,

which produced better results, was selected to fit the

curves of the 51 TUs:

S(ef)�(a�ef)=(1�(b�ef))

where S(ef) is the number of the species found per

sampling effort unit (ef); a and b, the parameters of

the function, were adjusted to the data of each curve by

means of a Simplex and Quasi-Newton method (Anon.

1999). The slope of this curve at each point is defined as:

r(ef)�a=(1�(b�ef)2)

where r(ef) is the slope of the curve for ef sampling effort.

When ef is the number of individuals collected up to date

in a given TU, the slope score is the present rate of

addition of new species to its inventory. A slope of 0.05

(that is, at present, collecting 20 individuals more would

result in 1 new species added) was selected as the cut-off

point below which an inventory should be considered

reliable enough that its collector’s curve can be used to

estimate the total number of species in the Territorial

Unit. Although a significant number of new species are

expected to be added to the inventory of TUs with such a

slope, after this point the estimates of total richness

obtained with the species accumulation curves as new

sampling effort is carried out become relatively stable

and independent from the new effort invested (Hortal

and Lobo unpubl.). Thus, we assume that, with slopes

lower than this, our function would adequately describe

the real, as well as the observed, relationship between

sampling effort and species inventorying.

Although Hortal et al. (2001) used the number of

species recorded in each well-sampled TU as the

dependent variable, this score does not necessarily

represent the total number of species that may constitute

its inventory. Thus, the asymptote of the species

accumulation curve was used as a local estimate of the

species richness in each well-sampled TU. That is, the

point where the slope of the curve reaches 0 (asymptotic

species richness; STU�/a/b; Soberón and Llorente 1993),

which corresponds to the total number of species that

would be recorded in the TU with a hypothetical infinite

sampling effort. Hereafter, the dependent variable STU is

defined as the butterfly species richness scores predicted

by the collector’s curve asymptote in each TU previously

identified as well-sampled. To assess if modelling point

estimates performs better that observed richness scores,

we have also modelled the latter (Sobs), and compared
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model building and model results from both dependent

variables.

Model development

Our aim is to obtain a function, based on the environ-

mental and spatial variables, able to predict accurately

richness scores throughout Portugal. To find such a

function, we used the regression techniques of General

Linear Modelling (GLM; McCullagh and Nelder 1989,

Dobson 1999; for applications in ecology see Nicholls

1989, 1991, and Crawley 1993). We followed three steps

(Guisan and Zimmermann 2000, Hortal and Lobo

2002).

1) Model formulation. We assumed a Poisson dis-

tribution for species richness, and a logarithmic relation-

ship between the dependent variable and the predictor

(independent) variables, as recommended for biodiver-

sity-related variables (Crawley 1993).

2) Selection of predictor variables. To account for

environmental factors effecting species richness, we use

the available environmental variables that could be

related to species richness on our working scale (2500

km2). We also included latitude and longitude (i.e., the

spatial location of the TUs) as predictors in the model

fitting procedure, to include effects due either to historic

events or uncodified variables, as they may cause

patterns in the spatial distribution of species richness

that differ from the purely environmental. Collinearity

among predictors is not a concern, to the extent that our

aims were primarily to predict a map of the region

represented by our data (by maximizing explained

variance without inferring causal relationships from

the model; Legendre and Legendre 1998, Hortal et al.

2001). Even though environmental variables are likely to

be spatially autocorrelated (which invalidates the as-

sumption of their independence), their deletion would

lead to ignoring the effect of the processes responsible

for the spatial distribution of the variable (Legendre

1993). They were not deleted, but the residuals from the

final model were examined to see if they were spatially

autocorrelated (see Model validation section).

3) Model fitting. We have used the procedure based on

iterative stepwise GLM (Anon. 1999) described else-

where (Hortal et al. 2001, Lobo and Martı́n-Piera 2002).

The change in Deviance from that of a null model (i.e.

the percentage of variation in STU explained) was used to

evaluate the fit of the models, its significance being

determined with a classic F test (McCullagh and Nelder

1989, Dobson 1999). This process accounts for: a)

possible non-linear relationships between species rich-

ness and the environmental predictors, by including

linear, quadratic and cubic functions (Austin et al.

1996); b) the effect of synergic interactions between

pairs of variables on species richness, including interac-

tion terms (multiplication terms) between all pairs of

explanatory variables (Margules et al. 1987); and c) the

spatial structure of STU unexplained by the environ-

mental predictors, including the nine terms of the third-

degree polynomial of latitude and longitude (Trend

Surface Analysis, TSA; Legendre 1993, Legendre and

Legendre 1998).

Model validation

When our purpose is to obtain accurate predictions,

increasing the explained variation in species richness is a

secondary task. The goodness-of-fit of the model only

reflects its relationship with the data used in the process

of the model construction, but not its validity and

predictive usefulness in the rest of the territory studied.

Thus, its strengths and weaknesses should be evaluated

to determine if and how it can be improved, and if it is

useful to better understand the broad patterns of

butterfly species richness in Portugal (Hortal and Lobo

2002).

Residual analysis

We explored model residuals to identify potential out-

liers (TUs with raw residual scores higher than the

standard deviation of predicted values), and Territorial

Units with high scores of Potential Leverage (PLV; a

measure of the distance of each observation to the

centroid of the multidimensional space defined by the

variables included in the model; Nicholls 1989). Each

residual value was examined to determine whether they

were due to erroneous data, or to the environmental

uniqueness of TUs. Whilst the former were eliminated

before the model fitting procedure, the latter were

included with the rest of the observations in the final

parameter estimation process.

To test whether final model residuals were spatially

autocorrelated or not, we used Moran’s I test (Legendre

and Legendre 1998) over regular distance lags of 50 km

width, that of TU size. Whenever, as a result of this

analysis, any spatial structure could be seen to remain in

the residuals, such autocorrelation was taken to indicate

the existence of at least one further variable not included

in the analysis, with a spatially structured effect on

species richness. The inclusion of the third degree

polynomial of latitude and longitude is presumed to

compensate for this influence, so any detectable structure

is likely to be due to processes occurring at a spatial scale

smaller than used in our analysis (50�/50 km), and

beyond prediction.

Model reliability and goodness-of-fit

We estimated the predictive power of the model with a

Jackknife test; model parameters were estimated as
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many times as the number of well-sampled TUs (n),

deleting each TU singly once, and comparing the n�/1

function result with the asymptotic species richness

observed in the deleted TU. Scores obtained this way

are prediction errors (Ei), that is, the relative distance

between the score predicted for each i observation when

it is excluded from the model estimation process (Pi), and

the observed value (Oi) (Pascual and Iribarne 1993).

Percentage error for the ith case is:

Ei�
jOi � Pij

Oi

�100

We used Mean Prediction Error (EPM; the mean of all

Ei error estimations) to measure the real error associated

with the model. Its inverse (EPM�1�/100�/EPM) can

be used to estimate its Predictive Power (Pascual and

Iribarne 1993).

Previous works use a similar way to assess model

reliability (e.g. Wohlgemuth 1998). In these studies, a

part of the observations (e.g., a third or a half) is

extracted from model building procedure, becoming the

‘‘test dataset’’, and the performance of the model built

from the ‘‘training dataset’’ is tested there. The jackknife

method used here presents three advantages to test

model reliability outside the observations (Hortal et al.

2001, Hortal and Lobo 2002): 1) the rationale of the

method is the same, that is, test how a model built from a

part of the full dataset performs in the other part, but

here we do it one time per observation, instead of only

one, increasing the power of this analysis; 2) possible

bias due to the selection of the test dataset is avoided, as

all observations are part of it in its own error estimation;

and 3) it can be used with small datasets, such as the one

presented here (only 23 observations), without losing a

high number of degrees of freedom for the training

dataset. A better assessment can be obtained testing

model fitting against a set of different replicates of

training/test datasets (see Wohlgemuth 1998 for an

example). However, given the small size of our dataset,

extracting a significant part of the observations may

prevent it from embracing all species richness variation.

The functions for STU and Sobs obtained after deleting

erroneous data and estimating final model parameters

were applied to the predictor scores in each Portuguese

TU, and the former was used to obtain a predicted map

of butterfly species richness distribution in mainland

Portugal.

Results

Sampling effort assessment

The number of individuals recorded in each TU is shown

in Fig. 2a. As for Scarabaeinae (see Fig. 1 in Hortal et al.

2001), the spatial distribution of sampling effort in

Portugal is highly heterogeneous. Some well-studied

areas coincide for the two groups. Examples included

areas near Lisbon, and the Algarve (southern coastal

zone). On the other hand, eastern areas and Central

System mountains (Serra da Estrela) were well-sampled

for scarabeids, whilst northern mountainous were well

sampled for butterflies.

The collector’s curves for the 35 TUs with �/100

recorded individuals were randomized 100 times, and

then adjusted to a Clench equation (Fig. 3). Of these, the

slopes of 23 fell below the 0.05 cut-off in the last

observation, and were selected as well-sampled (Table 1;

Fig. 2b); the scores of STU and Sobs for these TUs were

correlated (Pearson r�/0.93; n�/23; pB/0.001). It is

remarkable that, in the 23 well sampled TUs, whilst

observed species richness scores were positively corre-

lated with the number of recorded individuals (r�/0.43;

n�/23; p�/0.042), STU scores showed no significant

relationship (r�/0.27; n�/23; p�/0.206). Faunistic

knowledge for butterflies seems to be more complete

than it is for scarabeids, for which only 16 TUs could be

selected using a similar criterion (Hortal et al. 2001).

Obviously, however, some supplementary sampling ef-

fort directed mainly towards the Alentejo (the interior

southern region) is still required.

Model building and validation

We related asymptotic species richness scores of well-

sampled TUs (STU; see Table 1), with the third-degree

polynomials of the environmental variables one-by-one

in a backward stepwise analysis (Table 2). In successive

steps, the model included the third degree polynomial of

annual days of sun (Dsun�/Dsun2�/Dsun3), the third-

degree polynomial of minimum temperature (Tmn�/

Tmn2�/Tmn3), altitude range (Arn), and the interaction

term of maximum temperature and limestone bedrock

surface (Tmx�/Gbs), with their corresponding deletions

(Table 3). Inclusion of the third-degree polynomial of

latitude and longitude was not significant, so the final

model selected was:

STU�EXP[c�f�Dsun�g�Tmn2�h�Arn�i

�(Tmx�Gbs)]

where STU is estimated butterfly species richness in each

TU, c is the intercept, f�/i are model parameters for

each term, and the rest of abbreviations are given in

Table 2.

Model residuals Moran’s I scores were not significant

over any one of the seven distance classes. That is, they

were not autocorrelated and, thus, there was no missing

large-scale spatial structure due to a non-considered

variable. After the Jackknife procedure, model Mean

Prediction Error was 6.64% (9/5.18).

72 ECOGRAPHY 27:1 (2004)



However, after an exploration of model residuals, six

outliers were identified (Fig. 4). Of them, TU number 51

PLV was high. As it constitutes an environmentally

unique TU, it was kept for model parameter estimation.

Of the rest of the outliers, the ones with residuals higher

than twice the standard deviation (TUs 20 and 39), were

deleted.

After eliminating these two observations, we estimated

model parameters again:

STU�EXP[4:358�0:163�Dsun�0:062�Tmn2

�0:069�Arn�0:055�(Tmx�Gbs)]

All of them were significant at a 95% confidence level.

Again, neither the model residuals nor the prediction

errors from the Jackknife analysis displayed evidence of

spatial autocorrelation. Both were also normally dis-

tributed. MPE decreased to 5.48% (9/4.78), which

implies a remarkably high Predictive Power (94.52%;

ranging from 89.74 to 99.30%).

Figure 5a shows the extrapolation of this function to

the 51 Portuguese Territorial Units. The north of the

country appears as the area with higher species richness

per TU. From there, STU diminishes southwards, and,

less strikingly, from the centre to both sides, reaching

minimum scores in the inner Guadiana basin, in the

southeast. Finally, a slightly richer row is located on the

southern coast, from the Tejo to Guadiana river mouths.

We followed the same steps to develop a model to

predict Sobs, which resulted in a less explanatory func-

tion (see Table 4). Neither the inclusion of any interac-

tion term, nor of the third-degree polynomial of latitude

and longitude, were significant, so the final model

selected was:

Sobs�EXP[q�j�Dsun�k�Gbas�l�Gbas2�m

�Ush2�n�Tmn2]

where Sobs is observed butterfly species richness in each

TU, q is the intercept, j�/n are model parameters for

each term, and variable codes follow Table 2. Residuals

from this function were negatively autocorrelated in the

first two distance lags (0�/50 km lag, Moran’s I�/

�/0.249, pB/0.05; 50�/100 km lag, I�/�/0.323, pB/

0.01). That is, residual scores were spatially structured,

but high scores in a given TU indicate low ones in the

surrounding ones, and vice versa. This negative auto-

correlation is only a minor problem, as indicates that,

Fig. 3. Collector’s curves from the 35 TUs with �/100 recorded
individuals (see Table 1). The order by which individuals are
entered in the curve has been randomized 100 times. The 23
TUs selected as well-inventoried enough are shown in unbroken
lines, and the rest in broken lines.

Fig. 2. a) Number of butterfly
individuals recorded in each Portuguese
TU (data from Garcia-Pereira 2003, and
ATLAMAR; see text). b) TUs selected
as well-sampled enough (see Table 1).
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although richness scores from neighbouring localities are

related, there are no clusters of nearby TUs with

residuals higher or lower than their surroundings. After

exploring model residuals, which presented higher stan-

dard deviation than the ones from the STU model, seven

outliers were identified (Fig. 4). As for the former model,

TUs 20 and 39, with residual scores higher than double

standard deviation were deleted, and the model para-

meters were estimated again. The model obtained was:

Sobs�EXP[4:361�0:214�Dsun�0:186�Gbas

�0:106�Gbas2�0:027�Ush2�0:072�Tmn2]

from which Ush2 parameter was significant only at a

90% level. Although the outcome of both predictive

models was highly correlated in the 23 well-sampled

Territorial Units (Pearson r�/0.962, n�/23, pB/0.001),

MPE of this model was higher, although this estimate

was more uncertain (12.83% 9/16.30), with a Predictive

Power (87.17%) ranging from 70.81 to 100%. Residuals

from both models (using STU or Sobs) were highly

correlated (r�/0.708, n�/23, pB/0.001), presenting

similar spatial distributions (Fig. 6). However, prediction

errors of both models showed different distributions

(Wilcoxon matched pairs test; n�/23, Z�/2.2507, p�/

0.024), evidencing the existence of different error sources

in the two datasets (estimated and observed richness

scores). Here, it is advisable that prediction errors of the

Sobs model showed a negative but significant relationship

with raw richness scores (that is, the higher the richness

score, the lower the error; Pearson r�/�/0.585, n�/23,

p�/0.003).

Discussion

Effect of sampling effort on observed species

richness

Biodiversity scores such as species richness extracted

from atlas data are inaccurate due to bias in sampling

effort. They do not contain information about taxo-

nomic and spatial bias, real absences of species, or

sampling intensity (Rich 1998). Sampling effort has a

considerable impact on both species richness and species

Table 1. Species accumulation curves of the 35 TUs with �/100 recorded individuals (see Fig. 3). TU numbers correspond with
those of Fig. 1; name lists their UTM codes; Sobs is the number of observed species, and ind. The number of recorded individuals; a
and b are the parameters of the Clench function adjusted to each curve; V. exp. is the percentage of Variance explained by each
function; r is the slope score in the last recorded individual; STU is the asymptote value predicted by the Clench equation, and %S is
the percentage of the predicted species that has been recorded already in that TU. The 23 TUs considered as well-sampled enough
(rB/0.05) are marked.

TU Name Sobs Ind a b V. exp. r STU % S

1 29TNG1 43 178 0.860 0.0145 99.87 0.112 59.1 72.7
5 29TNG2 71 233 1.006 0.0098 99.99 0.161 102.2 69.5
6 29TNG4 105 1833 1.080 0.0098 99.97 0.003 110.2 95.3
7 29TPG2 100 901 1.111 0.0101 99.88 0.013 109.5 91.4
8 29TPG4 109 848 1.114 0.0089 99.88 0.019 125.1 87.1

10 29TNF1 83 1077 0.639 0.0068 99.74 0.012 94.0 88.3
11 29TNF3 99 1380 1.072 0.0101 99.95 0.005 105.6 93.8
12 29TPF1 106 1609 1.268 0.0113 99.81 0.004 112.4 94.3
13 29TPF3 73 178 0.976 0.0079 99.98 0.329 123.9 58.9
16 29TNF4 86 665 1.041 0.0106 99.99 0.021 98.6 87.2
17 29TPF2 93 838 1.140 0.0109 99.89 0.013 104.6 89.0
18 29TPF4 57 169 1.013 0.0119 99.98 0.200 85.0 67.1
20 29TNE3 84 474 1.145 0.0115 99.93 0.038 99.9 84.1
21 29TPE1 99 1317 0.838 0.0078 99.77 0.008 107.6 92.0
22 29TPE3 68 320 1.056 0.0124 99.99 0.063 85.3 79.7
23 29TNE2 42 180 1.090 0.0206 99.98 0.074 52.9 79.4
25 29TPE2 78 350 1.166 0.0118 99.78 0.065 99.1 78.7
26 29TPE4 40 138 1.066 0.0192 99.99 0.133 55.5 72.1
28 29SND1 66 559 0.817 0.0108 99.78 0.022 75.9 86.9
29 29SND3 58 195 1.103 0.0138 99.96 0.135 80.2 72.3
30 29SPD1 62 597 0.886 0.0127 99.93 0.015 69.9 88.7
31 29SPD3 51 268 1.094 0.0177 99.99 0.047 61.9 82.5
32 29SMD4 55 350 1.139 0.0177 99.93 0.029 64.5 85.3
33 29SND2 41 170 0.990 0.0184 99.98 0.092 53.9 76.1
36 29SPD4 61 781 0.846 0.0130 99.39 0.008 65.2 93.6
37 29SMC3 82 3280 0.882 0.0106 98.95 0.001 82.9 98.9
38 29SNC1 63 1129 1.140 0.0171 99.91 0.003 66.5 94.8
39 29SNC3 45 338 0.884 0.0171 99.72 0.026 51.6 87.2
40 29SPC1 34 138 0.957 0.0214 99.88 0.098 44.6 76.2
41 29SPC3 61 955 0.968 0.0150 99.78 0.005 64.5 94.5
42 29SNC2 63 291 0.960 0.0117 99.97 0.076 81.8 77.0
45 29SPC4 49 287 0.943 0.0162 99.71 0.042 58.1 84.3
49 29SNB2 73 2759 0.697 0.0093 98.90 0.001 74.6 97.8
50 29SNB4 71 1074 0.693 0.0091 98.75 0.007 76.0 93.4
51 29SPB2 61 553 0.892 0.0129 99.74 0.017 69.1 88.3
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incidence estimates of different areas (Dennis et al.

1999). Although collector visits are biased toward richest

areas, they are also biased toward areas near home

(Dennis and Thomas 2000). Thus, it is likely that the bias

detected in our sampling effort assessment may be

explained by entomologists’ habits, or by the distribu-

tion of entomologists themselves. Our results show that

sampling effort has indeed been directed to areas with

higher observed richness. However, scores estimated

from species accumulation curves were not correlated

to the number of individuals, suggesting that the biases

identified above do not explain all the variation in

butterfly species richness, a fact that may be true for

many of the distribution Atlas available at present in

European countries.

As pointed out by our results, even with such biased

data, a survey effort assessment, such as the one

developed here, can be used to produce predictive

models that fill in gaps in knowledge (Dennis and Hardy

1999, Lobo 2000, Hortal et al. 2001, Hortal and Lobo

2002, Lobo and Martı́n-Piera 2002). Although the

model developed from observed richness scores could

Table 2. Explanatory variables included in the analysis, with their respective codes. Deviance and Change in Deviance were
calculated through the comparison with a null model (with no explanatory variables) of butterfly species richness. The linear,
quadratic or cubic functions of each variable were selected when they produced a Change in Deviance significant at a 5% level. Dev:
Deviance; Ch. Dev: Change in Deviance; * pB/0.05.

Variable Code Selected terms DF Dev. Ch. Dev. F

Null model 22 119.01

Topographic variables
Minimum altitude Amn Amn 21 92.7 26.31 5.96*
Maximum altitude Amx Amx 21 47.6 71.33 31.42*

Amx�/Amx2 20 47.2 71.81 30.42
Amx�/Amx2�/Amx3 19 34.5 12.67 6.97*

Mean altitude Amd Amd 21 50.7 68.32 28.30*
Altitude range Arn Arn 21 58.3 60.64 21.81*

Climate variables
Minimum temperature Tmn Tmn 21 53.6 65.40 25.62*

Tmn�/Tmn2 20 49.2 69.78 28.35
Tmn�/Tmn2�/Tmn3 19 36.3 82.73 43.31*

Maximum temperature Tmx Tmx 21 58.7 60.65 21.82*
Mean annual temperature Tmd Tmd 21 28.9 90.13 65.53*

Tmd�/Tmd2 20 28.5 90.53 63.55
Tmd�/Tmd2�/Tmd3 19 24.8 94.25 72.31*

Annual temperature range Trn Trn 21 118.8 0.23 0.04
Trn�/Trn2 20 102.0 17.04 3.34

Annual days of sun Dsun Dsun 21 33.6 85.46 53.48*
Dsun�/Dsun2 20 33.4 85.57 51.18
Dsun�/Dsun2�/Dsun3 19 22.6 96.38 80.88*

Mean annual precipitation Pmd Pm 21 64.3 54.75 17.89
Pm �/Pm2 20 44.0 75.00 34.08*

Summer precipitation Psm Psm 21 57.8 61.24 22.26
Psm�/Psm2 20 42.8 76.23 35.64

Annual precipitation range Prn Prn 21 68.7 50.27 15.35
Prn�/Prn2 20 55.3 63.69 23.02

Land use variables
Cultivated and urban area Ucu Ucu 21 118.2 0.80 0.14

Ucu�/Ucu2 20 82.9 36.07 8.70*
Forest area Ufr Ufr 21 111.2 7.83 1.48
Shrub area Ush Ush 21 116.3 2.76 0.50
Grassland area Ugs Ugs 21 118.9 0.17 0.03

Ugs�/Ugs2 20 93.7 25.28 5.39

Bedrock geology variables
Basic bedrock area Gbs Gbs 21 109.2 9.83 1.89
Clay-mineral bedrock area Gcl Gcl 21 98.9 20.11 4.27

Gcl�/Gcl2 20 90.6 28.40 6.27
Gcl�/Gcl2�/Gcl3 19 77.7 41.27 10.09*

Acid bedrock area Gac Gac 21 97.1 21.95 4.75

Environmental diversity variables
Land use diversity Dlu Dlu 21 86.1 32.94 8.04
Bedrock geology diversity Dbg Dbg 21 98.6 20.42 4.35

Geographic and spatial variables
Distance to Pyrenees Dpr Dpr 21 118.0 1.02 0.18

Dpr�/Dpr2 20 104.1 14.91 2.86
Land surface Lsr Lsr 21 116.6 2.40 0.43
Latitude Lat Lat 21 37.3 81.70 45.98*

Lat�/Lat2 20 26.3 92.72 70.51*
Lat�/Lat2�/Lat3 19 18.4 100.64 104.02*

Longitude Long Long 21 117.9 1.14 0.20
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explain more variation, the one produced from asymp-

totic estimates was more consistent, with less standard

deviation, and lower residual scores throughout all

Portugal. Function errors were higher than 4 species

only in a few localized areas: the Algarve (SW corner),

Beira Litoral (western coast) and Trás-os-Montes (NE).

Thus, this latter model is likely to be more explanatory

and reliable, evidencing that using local estimates of

richness before the modelling procedure produces a

better picture of biodiversity patterns, or, at least,

homogenizes the variable, diminishing the noise present

in the dependent variable, in a way that improves how it

Table 3. Summary of the stepwise variable selection procedure used to build asymptotic butterfly species-richness (STU) models in
Portuguese well-sampled TUs. The Change in Deviance after the inclusion of each term in the model was evaluated with an F test
with 0.05 confidence level. Variable codes follow Table 2. Marked percentage of explained deviance is the score of the model selected
at the end of the process. Dev: Deviance; Ch. Dev: Change in Deviance; % Dev: percentage of total deviance explained.

Model Dev DF Ch. Dev. F p % Dev

Null 119.0162 22

Step 1
�/Dsun 33.5574 21 85.46 53.48 71.80
�/Dsun2 33.4426 20 0.11 0.07 0.7940

33.4426 20 85.57 51.18 71.90
�/Dsun3 22.6399 19 10.80 9.07 0.0072

22.6399 19 96.38 80.88 80.98
�/Dsun2 23.9174 20 �/1.28 �/1.07 0.3133

23.9174 20 95.10 79.52 79.90

Step 2
�/Tmn�/Tmn2�/Tmn3 12.1203 17 11.80 16.55 0.0008

12.1203 17 106.90 149.93 89.82
�/Dsun3 13.8040 18 �/1.68 �/2.20 0.1553

13.8040 18 105.21 137.19 88.40
�/Tmn3 15.7390 19 �/1.93 �/2.34 0.1426

15.7390 19 103.28 124.67 86.78
�/Tmn 16.1546 20 �/0.42 �/0.51 0.4834

16.1546 20 102.86 127.35 86.43

Step 3
�/Arn 11.3327 19 4.82 8.08 0.0104

11.3327 19 107.68 180.54 90.48

Step 4
�/Tmx�/Gbs 7.0212 18 4.31 11.05 0.0038

7.0212 18 111.99 287.11 94.10

Fig. 4. Residuals and Potential
Leverage (PLV) from both models
in well-sampled TUs; full dots
correspond to STU scores, and
empty squares Sobs. Standard
deviation of predicted scores is
shown as dots and dashes for the
former, and dashes for the latter.
Residuals with scores higher than
double standard deviation (circles)
have been deleted in the final
estimation of model parameters.
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can be fitted with the used predictors. However, to carry

out this previous assessment, a measurement of survey

evenness and intensity is needed (Dennis et al. 1999).

Using the incomplete and sparse sampling information

available in the scientific literature, and private and

institutional collections, both database-records for Sca-

rabaeinae (Hortal et al. 2001, Lobo and Martı́n-Piera

2002) and recorded individuals for butterflies (this

work), have proved to be useful surrogates of sampling

effort. The minimum effort of recording only a little

reliable information associated with each capture, such

as that found in good entomological labels, makes

virtually all data useful in assessing or predicting

biodiversity.

Predictive models and causal explanations

Modelling procedures have been used in ecology to: 1)

identify causal factors that best explain the dependent

Fig. 5. Species-richness scores for
the 51 Portuguese TUs
(abbreviations as in Table 2): a)
Number of butterfly species
estimated by the final model
(STU�/EXP[4.358�/0.163�/

Dsun�/0.062�/Tmn2�/0.069�/

Arn�/0.055�/(Tmx�/Gbs)]; b)
Number of Scarabaeinae species
estimated by the model S�/

EXP[3166�/0.464�/Pmd2�/

0.120�/Pmd3�/0.234�/Pmd�/

Ufr] (Hortal et al. 2001).

Table 4. Summary of the stepwise variable selection procedure used to build observed butterfly species-richness (Sobs) models in
Portuguese well-sampled TUs. Analyses as in Table 3; abbreviations and variable codes as in Tables 2 and 3.

Model Dev DF Ch. Dev. F p % Dev

Null 119.0162 22

Step 1
�/Dsun 59.2891 21 85.20 30.18 58.97
�/Dsun2 58.9675 20 0.32 0.11 0.1207

58.9675 21 85.52 29.00 59.19
�/Dsun3 48.0275 19 10.94 4.33 0.9717

48.0275 19 96.46 38.16 66.76

Step 2
�/Gbas�/Gbas2�/Gbas3 25.4968 16 22.53 14.14 0.9997

25.4968 16 118.99 74.67 82.35
�/Dsun2 25.7255 17 �/0.23 �/0.15 0.1381

25.7255 17 118.76 78.48 82.19
�/Gbas3 26.7944 18 �/1.07 �/0.72 0.4997

26.7944 18 117.69 79.06 81.46

Step 3
�/Ush2 18.5338 17 8.26 7.58 0.9955

18.5338 17 125.95 115.53 87.17

Step 4
�/Tmn�/Tmn2�/Tmn3 12.6429 14 5.89 6.52 0.9900

12.6429 14 131.84 145.99 91.25
�/Tmn3 12.7875 15 �/0.14 �/0.17 0.1547

12.7875 15 131.70 154.48 91.15
�/Tmn 13.3006 16 �/0.51 �/0.62 0.4496

13.3006 16 131.18 157.81 90.79
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variable (e.g. McCarthy et al. 2001); and 2) find a set of

factors to predict changes in the modelled variable,

without assuming any causal relationship. Despite the

fact that the former task needs additional experimental

information to certify causality (Lawton 1999, Mac

Nally 2000), these two models are frequently confounded

(see Guisan and Zimmermann 2000). The main pro-

blems of ascertaining causes from modelling come from

two sources: usefulness of the procedure to identify

causal relationships, and the existence of important

factors not included in the set of predictors used.

Many papers have used predictive models based on

regression methodologies to make hypotheses about

causal relationships between biodiversity variables,

such as species richness, and several environmental and

land use variables (e.g. Margules et al. 1987, Austin et al.

1990, 1996, Heikkinen and Neuvonen 1997). However,

regression procedures are not able to identify causes, but

instead specify covariation between the scores of the

variables (Mac Nally 2000, 2002). Thus, using these

methods to infer biodiversity responses to the environ-

ment may be misleading, as we are estimating only

patterns of spatial co-occurrence, and not causation. In

this framework, predictive maps may allow us to identify

the main spatial patterns of many biodiversity attributes

(Levin 1992), but, as no causal relationships are

identified, its outcome should not be extrapolated out-

side of the spatial and numeric range of the explanatory

variables used (Legendre and Legendre 1998), nor to the

future scenarios that may appear after climate or land-

use changes.

Present distribution of biodiversity is conditioned by

the responses of the species to the environment, as well

as by several unique contingent factors. For many taxa,

geographic patterns in the composition of West Pa-

laearctic assemblages have been conditioned by the

extreme climatic fluctuations occurring since the Pleis-

tocene (e.g. de Jong 1998, Hewitt 1999). Post-glacial

dispersal and redistribution of European butterfly fau-

nas has been related with two of their key characteristics

(Dennis et al. 1991, Dennis 1993): 1) a close relationship

to floristic composition (due to the host-specificity of

most butterfly species to a given plant species), and 2)

great sensibility to climatic alterations (due to physiolo-

gical restrictions). The effect of floral relationships in

structuring Portuguese assemblages can not be explored

with our analysis, while climatic and other environmen-

tal effects are implicitly included. However, environmen-

tal variables are not independent, and are also spatially

structured. Thus, no direct causal relationships can be

demonstrated with the regression methodology used

(Austin et al. 1996, Lobo et al. 2001).

Furthermore, the spatial scale used limits the outcome

of our analysis to the broad spatial resolution of

biogeography (see Blackburn and Gaston 2002 for a

discussion). Thus, our results differ from that of Mac

Nally et al.’s (2003) meso-scale analysis, which explained

butterfly species richness in terms of several topographic

variables. These variables probably act as surrogates of

Fig. 6. Geographic distribution of
the residuals produced by a) the
STU model, and b) the Sobs model.
Longitude and Latitude are
expressed in decimal Greenwich
degrees, and the shadowed areas
represent the raw residual scores.
The residual score ranges are
marked in the figure.
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microclimatic variation on small scales, but the effects

operating at this scale are unlikely to work at broader

ones. Nonetheless, their predictive function was useful

only on the mountain range where their data came from,

failing for an adjacent region. Differences between

faunal assemblages of different areas make the extra-

polation of such functions impossible to other, even

close, regions.

In a previous ordination analysis, Garcia-Pereira

(2003) found a relationship between butterfly species

composition and many environmental factors, of which

precipitation, altitude and, less strikingly, temperature

stand out. The positive relationship found between the

number of rainy days and richest areas (composed of

European elements, and located in the north of the

country), was confirmed by the strong negative relation-

ship (ca 80%) found between richness and the number of

sunny days, its inverse measure (see Tables 2 and 3).

Especially in relation to southern faunistic replacement,

temperature variables also had a significant effect which

stands out in both analyses. Other variables had

subsidiary effects on the composition of assemblages;

for example, increases in species richness with increasing

altitude may be related to higher environmental hetero-

geneity. The association of the Algarve fauna (composed

of Mediterranean thermophylous species), on the south-

ern coast, with calcareous bedrock and high tempera-

tures (see Table 3), may be related to the soil specificity

of many host plants.

All the three areas that presented high residuals, Beira

Litoral, the Algarve and Trás-os-Montes, showed parti-

cular features which may be difficult to predict by a

general function such as the one developed here. The

first constitutes an altitude gradient, from the hillsides of

the Serra da Estrela, towards the western coast. The

second and third, apart from being the only hotspots

shared by butterflies and scarabeids (see below), are

inhabited by ‘‘singular’’ butterfly assemblages, which

include many endemics, and species rare or inexistent in

the surrounding areas (Garcia-Pereira 2003).

Conservation assessment through predicting

biogeographic patterns

Given the spatial scale studied, it is not possible to

delimit exactly the sites most important for butterfly

conservation in Portugal. However, those regions where

some of these sites are located can be identified. Once

conservation goals are well defined for a specific region,

work on a local scale should be done to define the shape,

extent and legal regulation of the protected sites (see

Bassett and Edwards 2003). Trás-os-Montes and the

Algarve are the only hotspots shared by both butterflies

and dung beetles (see Fig. 5). These two areas host

‘‘singular’’ butterfly faunas, as well as mid-to-high

endemicity scores for scarabeids (Lumaret and Lobo

1996, Verdú and Galante 2002). This is specially so for

the south, where the appearance of Ibero-Maghrebian

endemic species produces high latitudinal b-diversity

scores (Hortal-Muñoz et al. 2000). The Portuguese

conservation network should include places from both

regions. Similar conclusions were reached independently

by means of complementarity analyses on the basis of

data from other diverse animal and plant taxa (Araújo

1999). The northernmost assemblages are protected by

the Montesinho Natural Park; only a few new sites

would be necessary to maximize protection success. In

the Algarve, however, many important conservation

areas are still unprotected.

Due to the southwards and peripheral impoverish-

ment in Trans-European butterfly richness described,

and the absence of Alpine species, the Serra da Estrela,

the western part of the Iberian Central System mountain

range, constitutes a hotspot only for dung beetles. Using

butterflies alone as indicators for conservation would

leave out this area, important at least for scarabeids, as

Eurosiberian and Mediterranean faunas overlap (Hortal

et al. 2001). Again, protected-area networks should

include sites from this region.

Using only predicted maps of species richness is not a

good strategy to identify networks of areas for con-

servation, unless they are used in combination with

information about the compositional variability in the

studied area. Once enough knowledge on this issue is

available, the richest TUs in each compositionally

different region seem to be a good criterion to place

areas for conservation. Thus, it is advisable to include

sites from the ‘‘shadow zones’’, poor in species, for both

butterflies (Alentejo), and scarabeids (Tejo river basin).

The Alentejo, a transition area between Mediterranean

and Eurosiberian faunas, where many range margins

occur, is home to impoverished Scarabaeinae and

Rhopalocera assemblages (Hortal-Muñoz et al. 2000,

Garcia-Pereira 2003). However, biogeographic cross-

roads are important for conservation policies (Spector

2002), and this region has been identified as an

endemicity area for diverse, independent groups of

plants and animals (Martı́n et al. 2000, Garcı́a-Barros

et al. 2002). Using species richness as a single criterion in

conservation planning would have ignored this area.

Hotspots are frequently found in areas of ecological

transition and may host both core and marginal

populations (Araújo 2002), the latter which may be

subject to important evolutionary processes (Thomas et

al. 2001). However, as singular assemblages may often be

absent from such areas, they may be undervalued in

conservation policies. The Serra da São Mamede, the

only mountain range exceeding 1000 m in altitude south

of the river Tejo (TU number 35; see Fig. 1), may be a

good example of the situation described above, where

Eurosiberian and Mediterranean intergradation condi-
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tions favour both the sympatric occurrence of sister taxa

from both zones and a rich diversity of species (Amphi-

bians and Reptiles; Sá-Sousa 2000); it also hosts a local

Scarabaeinae hotspot (Hortal et al. 2001).

Final considerations
Biodiversity assessment from Atlas data

Atlas data alone are far from accurate in covering the

spatial distribution of biodiversity measures, due to

sampling bias (Dennis et al. 1999, Dennis and Thomas

2000). As new atlases are developed, and more sampling

is carried out, the diversity measures obtained vary

greatly on different scales and extents, and the new

estimates of diversity may be uncorrelated with those

derived from old atlases (e.g. butterflies, Dennis 1997,

Dennis and Shreeve 2003; birds, Lobo pers. comm.).

New sampling designs are needed to obtain reliable

information on biodiversity patterns (Dennis and Hardy

1999, Dennis et al. 1999, Dennis and Thomas 2000,

Hortal and Lobo unpubl.). A measure of sampling effort

or, at least, a description of the surveys, included in the

databases used to build these atlases (Dennis et al. 1999,

Dennis and Thomas 2000) is necessary for the produc-

tion of maps of predicted biodiversity components such

as species richness, rarity or endemism (Carroll and

Pearson 1998a, Pearson and Carroll 1999, Lobo 2000,

Hortal et al. 2001, Hortal and Lobo 2002, Lobo and

Martı́n-Piera 2002). With the procedure described here

and atlas databases, sound predictions of these surro-

gates can be obtained for a given set of areas, and then

interpolated for the rest of the territory studied.

Which biodiversity surrogates predict, and how?

Unfortunately, a map of a single biodiversity surrogate is

not enough to describe all the spatial variation in the

assemblages from a given group. To decide where and

how to locate protected areas, other biodiversity com-

ponents (e.g. species turnover, faunal composition, rarity

or endemism) must also be estimated, and used jointly

with biogeographic and ecological information (see

Lobo et al. 2001, 2002 for some examples). The scale

of the work presented here is too large to design concrete

boundaries for the new protected sites that may be

integrated in the conservation network. However, the

main patterns of variation may be obscured by small-

scale processes at smaller spatial resolutions. Thus, the

goodness-of-fit and utility of predicted maps increase on

larger scales (Carroll and Pearson 1998b, Pearson and

Carroll 1999). In this framework, regional conservation

goals should be stated on broad scales. Then, site

networks should be designed in each important area

on a smaller scale (see above), taking into account local

parameters operating at a landscape level, such as land

use, land owners, productive and urban areas, local

impacts, etc. This flexible approach connects broad and

landscape scale conservation planning in a reasonable

way: interesting areas are identified at a coarse-grain

scale, and reserves are designed in situ.

The resolution used here (50 km grid cells) seems

useful for conservation planning. Many Atlas data can

be referred to this scale, or to a similar one, as the units

of the 0.58 geographic grid have approximately the same

surface area throughout the world, except at extreme

north and south latitudes. Moreover, a large amount of

world-wide GIS environmental information is easily

available at this spatial resolution, or even at smaller

ones (Garcı́a Hernández and Bosque Sendra 2001; see

also the United Nations Environmental Program geo-

graphic information database; B/http://www.grid.unep.

ch/�/).

Utility of indicator taxa

Carroll and Pearson (1998a, Pearson and Carroll 1999)

successfully used a mixed procedure, joining together an

indicator taxon and geostatistical analyses to predict

species richness of another group. However, species

richness of different taxa are not necessarily correlated

(as seen in data about butterflies and dung beetles

presented here). This study shows that when the cover-

age of spatio-temporal variation is complete enough,

(see Hortal and Lobo unpubl.), additional predictor taxa

may not be necessary. Moreover, current results indicate

that geostatistics alone can also help interpolate such

maps when good geographic coverage of well-sampled

TUs is available (Lobo and Hortal unpubl.).

Thus, the use of any single group as an indicator for

all biodiversity can be misleading; it is necessary to use

as many groups as possible. As stated above, good Atlas

data are available only for a few groups, mainly plants

and vertebrates, although using raw scores from them

introduces inaccuracies. These maps can be obtained

rapidly and accurately with good databases, and the

spatial prediction of biodiversity surrogates. With the

information so-obtained, present-day arbitrary or inac-

curate-data-based area selections can be improved from

a by far wider spectrum of all biodiversity.
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