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Abstract. While conservation planning requires good biodiversity data, our knowledge of most

living groups is scarce and patchy even in well-sampled regions. Therefore, we need methodologies

for rapid assessments for particular groups and regions. Maps of any biodiversity surrogate can be

interpolated from even a few well-known sites, but such places are usually lacking. We therefore

propose a protocol for designing field surveys to obtain good coverage of pattern variations of

biodiversity in a given region. To represent biodiversity patterns comprehensively, we use a rule

step site-allocation procedure, partially based on Faith and Walker’s ED criterion that takes

environmental and spatial variation into account, together with other criteria such as survey costs.

A preliminary assessment of the adequacy of this site sampling strategy is made. Then a set of

complementary sites is selected for further sampling. Using the ED criterion, during the stepwise

process a p-median analysis is applied both to an environmental distance matrix and to a spatial

distance matrix, to maximize the amount of variation covered by our survey planning. This rule-set

allocation procedure is integrated into a continuous sampling design protocol directed to ensure we

can sample all biodiversity of a region. This protocol requires the gathering of both biological and

environmental information, an assessment of previously available information, the choice of

sampling methods and dates, and a continuous assessment of the success of the survey being carried

out. An example of the application of this protocol to the survey design of dung beetle (Coleoptera,

Scarabaeoidea) diversity in the Comunidad de Madrid (Spain) is included.

Abbreviations: CM – (Comunidad de Madrid); DEM – (Digital Elevation Model); ED – (com-

plementarity-based site allocation method developed by Faith and Walker, 1994, 1996); edi –

(Environmental distances); GBIF – (Global Biodiversity Information Facility); GIS – (Geographic

Information System); GLM – (General Linear Models); PCA – (Principal Components Analysis);

PCoA – (Principal Coordinates Analysis); sdi – (Spatial Distances); TU – (Territorial Unit); UTM –

(Universal Transverse Mercator)

Introduction

One of the main factors bearing on the current biodiversity crisis is the
incompleteness of our knowledge of the patterns of the variety of life in most
regions of the planet. In a rapidly changing world, knowledge of species
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distribution patterns is necessary to improve the effectiveness of conservation
policies, both for the selection of reserves and for their subsequent manage-
ment (Austin and Heyligers 1989; Neldner et al. 1995). Usually, information
about inventories is incomplete or lacking for most regions and living groups.
However, with only a few reliable well-distributed local inventories (i.e. max-
imizing the representation of the assemblage variation in the region), it is
possible to extrapolate maps of their estimated distribution over all the region
(Margules et al. 1987; Bojorquez-Tapia et al. 1996; Iverson and Prasad 1998;
Zimmermann and Kienast 1999; Hortal and Lobo 2001; Hortal et al. 2001;
Lobo and Martı́n-Piera 2002; Lobo et al. 2002). So, a biodiversity assessment
system, comprising surveys, extrapolation and reserve selection techniques is
needed for conservation purposes (Austin 1998; Margules and Pressey 2000;
Ferrier 2002; Ferrier et al. 2002a, b). A necessary component of any useful
strategy to explore the main patterns of biodiversity within a region (i.e. species
richness and composition of assemblages) is the accomplishing of systematic
field surveys (Haila and Margules 1996; Ferrier 2002). However, funds directed
to biodiversity sampling are often insufficient to maintain large-scale survey
campaigns. So, new methods are needed to design rapid and accurate surveys
that minimize resource consumption and obtain reliable information about
distribution of unknown living organisms (Neldner et al. 1995; Barnett and
Stohlgren 2003). Sampling methodologies specifically designed to obtain a
comprehensive picture of biodiversity in a region are needed. Methods of
allocating sampling points in a given territory have been directed either to
select points randomly in space, to cover variation regularly in space (South-
wood and Henderson 2000; Hirzel and Guisan 2002), to obtain truly statisti-
cally-independent samples (Davis and Goetz 1990; Pereira and Itami 1991), or
to survey throughout all the environmental spectrum (stratified and gradsect
methods; see Bunce et al. 1996 and Hirzel and Guisan 2002 for the former, and
Austin and Heyligers 1989, 1991 for the latter).

If environmental diversity and biological diversity were positively related, the
use of stratified and gradsect methods would be expected to recover most of the
biodiversity of a region (Belbin 1993; Faith and Walker 1996; Wessels et al.
1998). However, both methods are based on partial representations of overall
environmental variability (a classification, and the most important gradients,
respectively). Further improvements on survey selection methods should try to
use all environmental variability in the studied region. This requirement is
accomplished by ED (Faith andWalker 1994, 1996), a site-allocation criterion to
develop territorial selections minimizing the variation uncovered by the selected
sites in the matrix of distances between all available locations. This matrix ac-
counts for regional complementarity (that is, biodiversity variation throughout
the region), either from species data or biodiversity variation surrogates (e.g.,
between-sites environmental and/or spatial distances). While data about the
spatial distribution of biodiversity is usually scarce and biased, nowadays is quite
easy to obtain and manage high-quality GIS environmental data. Thus, ED has
been commonly used based on a description of environmental variability
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between sites as a surrogate (although this description has also been built up
from spatial distances, see below). Here, the p-median procedure was considered
the best-possible alternative to allocate sites in a matrix of distances developed
from a given surrogate of biodiversity. Although ED has been commonly used
for reserve-selection procedures, it is also commonly applied in Australia to
design field surveys using spatial information (Ferrier 2002; Faith 2003). As it
tries to cover all the variability of the used surrogate in the studied area, ED
constitutes a better approach to describe environmental variations in a region
than stratified of gradsect methods.

A recent study showed that the ED criterion proposed by Faith and Walker
(1996) to select areas for conservation to cover environmental diversity varia-
tion in a given region was not able to recover more species than expected by
chance in some of the studied living groups at European extent (Araújo et al.
2001; see debate in Faith 2003 and Araújo et al. 2003), probably due to the
existence of a geographic pattern different from a purely environmental one.
This inconsistency may be due, first, to the fact that many different groups are
analyzed jointly even through each one reacts to variations in environmental
diversity in a different way; thus the matrix selected to describe the environ-
mental variations in Europe at the spatial scale considered may not adequately
describe these complex environmental requirements (see Faith 2003). Second, as
Araújo and collaborators point out, many contingent factors, such as historical
events and population-related processes, can modify the spatial distribution of
biodiversity. These contingent factors are difficult to express as explanatory
variables, but, if their effect varies over space, they generate a spatial structure in
biodiversity that can be identified and modelized using the spatial location of
each site (Legendre and Legendre 1998). So, in order to increase the probability
of capturing all the variability in the biological response variable across the
region, it will be convenient to maximize both the spatial and environmental
coverage of our survey. This issue has been pointed out by Ferrier (2002), and
has been applied to recent field survey campaigns in New South Wales, where
the ED method applied to environmental and spatial distances (geo-sampling;
Faith and Walker 1994) was used to allocate more than 4000 sampling points
(see Ferrier 2002, Ferrier et al. 2002a, b and Faith 2003).

While surveying the environmental diversity of a region would allow us to
record a great proportion of species present, such an approach can be
improved in two main ways:

(i) ED has been commonly intended as a surrogate for overall biodiversity.
However, as different environmental factors influence taxonomic groups
differently, the selected explanatory variables and their relative importance
should be specific to each taxonomic group.

(ii) Current species distributions may not be in equilibrium with current
environmental conditions, due to historical and geographical contingency
(Ricklefs and Schluter 1993). So, places with similar environmental
conditions may not hold the same assemblages. Thus, when identifying
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samples we must try to cover this non-environmental variability (see dis-
cussion in Ferrier 2002).

In this paper, we describe a hierarchical, stepwise and iterative allocation
protocol to optimize the balance between the spatio-environmental spectrum
sampled and the funds available for survey campaigns. Its rationale is partially
based on heuristic reserve-selection techniques (Pressey and Nicholls 1989a), as
well as and on the ED criterion (Faith and Walker 1994, 1996). The perfor-
mance of this p-median approach in maximizing biodiversity coverage using
environmental diversity as a surrogate has received moderate support in former
studies (e.g. Ferrier and Watson 1997), being unable to obtain solutions that
performed better than chance with several vertebrate groups (Araújo et al. 2001,
2003). However, it did covered better than previously used biodiversity surro-
gates (Faith 2003), so, although it does not produce statistically significant
selections all times, it remains as the best-available approach to design a survey.
Although biodiversity distribution may not be effected only by variations in
environmental diversity, it is likely that environment influences the composition
of species assemblages in some way, so ED applied to environmental distances
still remains as a sound option for covering biodiversity patterns in absence of
good biological data. The site allocation protocol described here must be con-
sidered as a practical application of the ED concept, in an attempt to answer the
question raised by Faith (2003): How does ED could help us to make the best
possible use of surrogate data? We use Faith andWalker (1994, 1996) algorithm
to locate sampling localities, improving its implementation by using a weighted
matrix of environmental distances specific to each taxonomic group, and also by
maximizing the amount of spatial diversity covered, in addition to environ-
mental diversity covered. The process of designing a survey of dung beetle
distribution in a Spanish region is used to illustrate the method.

Environmental and spatial distance matrices

As our objective is to select sites to maximize the environmental diversity
covered, taking into account spatial distribution, we apply the ED method
using two different matrices of distance between sites (see Ferrier 2002),
including: (i) an environmental matrix where the distances are weighted
according to the environmental requirements of the taxonomic group, and (ii) a
spatial matrix which includes the spatial distances between sites. Whilst the
former accounts for between-site environmental differences, the latter does so
for the spatial variation between sites with similar environmental conditions.

Building the environmental matrix

Former approaches to build environmental diversity matrices have used
common distance indices, such as Euclidean distance, to obtain a metric
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environmental space. However, although it presents some advantages, a metric
Euclidean space is not necessary to work directly with the distance matrix.
Moreover, to be useful in describing environmental preferences of each taxo-
nomic group, the proximity measure used must address two main issues; (i)
weighting the environmental variables used to build it (see discussion below),
and (ii) including qualitative environmental descriptors (e.g. soil types or land
cover categories), which are difficult to codify as continuous variables. Thus,
we propose to use the Gower similarity index to build the environmental
matrix. This distance measure allows to weight variables entered individually
(Legendre and Legendre 1998), resulting in a weighted non-Euclidean space
able to define similarity between sites, in which different weights are given to
different variables (Gower 1971; Casgrain and Legendre 2001). This approach
is alternative (and even complementary) to that of Faith and Walker (1996;
Faith 2003), where ED includes the option of giving differential weights to
concrete areas or sites (not to variables).

Environmental variables are often highly correlated. So, to minimize the
collinearity among environmental variables, it is useful to ordinate each one of
the main groups of environmental descriptors and reduce them into few new
independent factors. These groups of environmental variables can be climate
(precipitation, temperature, cloudiness, etc.), geomorphologic (digital elevation
models and related structural variables), energy or resource availability vari-
ables (remote-sensing indices, food availability, feeding success, etc.), or sub-
strate data (geology, soil, etc.), but any other requirement of the taxonomical
group can be included. After defining the groups of environmental variables,
each one is reduced to a new manageable set of independent, orthogonal,
variables or factors by means of an ordination method, which can retain the
gradient of variation present in the original variables (Faith and Walker 1996).
For continuous variables, such as temperature, elevation or slope, a Principal
Components Analysis (PCA) can be successfully used. However, as pointed out
by Legendre and Legendre (1998), when the variables used are qualitative, or
have been derived from qualitative information (e.g. proportions of each soil
class in each area), PCA is not an appropriate ordination technique. In this
case, a Principal Coordinates Analysis (PCoA; Gower 1966) is recommended.
This analysis is similar to PCA but the resemblance matrix is constructed from
a similarity index applicable to binary, qualitative, semiquantitative and
quantitative descriptors together, such as the above-mentioned Gower’s simi-
larity index (Gower 1971). In both ordination analyses (PCA and PCoA),
meaningless factors can be detected by a broken-stick method (Frontier 1976;
Legendre and Legendre 1998). All meaningful factors for each group of vari-
ables are retained to build the environmental matrix. But there remains the
question of which weights would be applied to these new variables or factors.

Former works have considered ED as a surrogate for overall biodiversity.
However, when studying groups of environmentally or evolutionary related
species, this approach can be refined.We thus argue thatweightsmust come from
previous hypotheses of the relative influence of each factor on the distribution of
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the taxonomic (or functional) group that we are going to sample. These
hypotheses can be formulated starting from: (i) the available biological and
environmental data for the studied region at the scale to be considered; (ii) the
available biological and environmental data for other regions and scales; (iii) the
literature, or our basic empirical knowledge of the group.

If reliable faunistic information is available for a reduced set of well-sampled
sites in the studied region, each factor can be explored separately to ascertain
its effect on the variability of the taxonomic group at the scale and extent under
consideration. Here, the best option is to use faunistic complementarity (e.g.,
variation in species composition, see Hortal et al. 2003) as a surrogate measure
of variations in biodiversity. However, most times biological data is too scarce
to obtain reliable descriptions of species composition patterns, so other bio-
diversity attributes could be used, such as species richness, rarity, endemicity or
species richness. From them, species richness (i.e. number of species; Gaston
1996) seems to be a good option to determine the relative influence of envi-
ronmental factors on overall biodiversity, due to both practical and theoretical
considerations. On the one hand, it is easy to extract, and the less sensible
measure to differences in sampling effort among the well-sampled territorial
units. On the other hand, recent theoretical and experimental work supports
species richness as a key property of ecosystems, supporting and/or being the
outcome of processes driving to productivity, structure and resistance to
alteration of biological communities (see Tilman et al. 1996, 1997; Yachi and
Loreau 1999; Loreau et al. 2003; Jordano et al. 2003; Bascompte et al. 2003),
being its spatial patters also influenced by historical processes (see Ricklefs
2004). Both issues stress the utility of species richness as a surrogate to study
the spatial influence of biodiversity determinants.

The scores of this dependent variable can be related with each factor by
means of General Linear Models (GLM; McCullagh and Nelder 1989; Dobson
1999), a broad group of analytic tools that can be used with a wide range of
non-normal distributions for the random component, which include common
linear regression analysis, as well as logistic regressions and many other similar
analyses. To account for nonlinear relationships, we also suggest including the
cubic function of the factor in a backward selection stepwise analysis, where
non-significant terms in the equation are deleted. The variability in the
dependent variable explained by significant terms is measured as their change
in deviance from a null model (Dobson 1999). The percentage of deviance
explained will be the relative weight of this factor in the process of building the
environmental matrix. An example of the use of GLM modelling with varia-
tions in species composition can be found in Hortal et al. (2003). This process
must be carried out for the factors extracted from all the groups of environ-
mental variables. Recently developed dissimilarity modelling (GDM; see
Ferrier 2002, Ferrier et al. 2002b; Faith and Ferrier 2002), which analyzes
directly the distance matrices, may produce a better description of the rela-
tionships between biodiversity and environment, even with scarce data, and
thus may be a better option to obtain the relative group weights.
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When insufficient sites are well sampled, we can estimate the relative
importance of each factor using the biological and environmental data from
other regions, other scales, or other geographical extents (‘external data’).
Here, the main drawback is the assumption that the relative influences are
similar on our working scale or region, which may not be true. If no empirical
data are available, the relative weights of each environmental group can be
hypothesized taking into account existing literature or field knowledge of the
ecological requirements of the taxonomic group. If any a priori hypothesis can
be formulated, the weight applied to all groups must be equal to one. With the
information provided by the first sampling campaigns, these weightings can be
adjusted. In later sampling evaluations (see Stage 6 below), factor weights can
be recalculated when enough sites become well-sampled, yielding a new and
more accurate matrix of environmental distances.

Building the spatial distance matrix

Environmentally similar localities may hold different species assemblages due
to unique contingent events (e.g. historical or population-related). To incor-
porate this spatial variability we use the ‘geo-sampling’ proposed by Faith and
Walker (1994), that is, ED applied to geographic space (see discussion in
Ferrier 2002), by means of between-site Euclidean distances (spatial matrix).
However, this spatial variability would be better described by a spatial distance
matrix in which connectivity (i.e. differential costs of moving through spatial
patches) is considered (Ferrier 2002). Thus, as the cost of movement differs
among taxonomic groups, as well as its degree of connectivity or isolation,
these differences can be expressed as cost surfaces, which characterize the
difficulty in moving across each given patch in the region for the species of the
studied group (see Ferrier et al. 2002a). This cost surface can be developed
using GIS variables such as land cover, elevation, etc.

Multi-criteria allocation of sample sites

Once environmental and spatial matrices have been defined, the survey of bio-
diversity patterns requires maximizing together the amount of environmental
and spatial coverage sampled. This should be expected to improve the accuracy
of total biodiversity estimates and inventories of a given region, and also give
reliable information about its distribution in the spatio-environmental multi-
variate spectrum of the region, using the smallest number of samples possible.

The p-median allocation procedure

As pointed out by Faith and Walker (1996), the p-median procedures (Church
and Sorensen 1994; Church 2002) in which the ED method is based seem to be
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the best-available method to maximize gains in environmental and spatial
coverage. They involve determining the spatial location of a given new feature
(such as a hospital) in such a way as to minimize the distance from each target
point of the defined space (‘demand points’, e.g. the streets of a city) to the
nearest feature location (‘locality sites’, e.g. any hospital in the city). That is,
the spatial location where the sum of distances from all ‘demand points’ to the
next ‘locality site’ is lowest. These distances can be calculated in many ways,
depending on the purpose of our feature allocation. In the hospital example,
this distance can be calculated as the amount of time an ambulance spends to
reach the hospital from each city street using the street network and taking into
account the lengths of the streets and the speed of traffic in each one.

Two main approaches have been used to solve the p-median problem for
selecting areas to maximize the environmental variability recovered: (i) greedy
algorithms (Faith and Walker 1996; Faith 2003), where new features are added
iteratively to the former set of selected areas, and (ii) optimal algorithms
(Araújo et al. 2001, 2003), where a unique optimal solution is found, and all
desired features are added in a single step. The latter may produce a better
coverage of the overall variability present in the region, as greedy algorithms
(that is, take the best-choice at each step) may produce sub-optimal solutions
(Araújo et al. 2003). However, the greedy approach presents two main
advantages for the systematic selection of areas for survey in real-world bio-
diversity assessment, where most times both funds and time are limited. On the
one hand, these methods allow to maximize the biodiversity coverage as more
funds or time to sample more areas are being available. Site-selection can be
easily carried out by means of a stepwise procedure, where the new sampling
sites produce direct improvements in the gains in biodiversity coverage ob-
tained in the previous sampling campaigns. On the other, in such a stepwise
approach, it is easy to determine the moment when the cost (in time and/or
funds) of surveying more areas would not improve our biodiversity coverage
enough to be worthy. Depending on which other areas have been previously
selected, a given area’s complementarity value can be more or less than its cost
(Faith et al. 1996). Thus, we recommend the greedy p-median approaches for
stepwise survey planning processes.

Another issue when dealing with p-median algorithms is choosing between
continuous and discrete forms of describing the environmental space (Faith
2003). Briefly, whilst the former treats the environmental space as a contin-
uum between the extremes present in the region, the latter restricts this space
only to the environmental conditions present in the sites (spatial locations)
used as ‘demand points’ (in our case, all territorial units in the region; see
Faith et al. 1996, Faith 2003; Araújo et al. 2003 for a discussion on both
p-median forms). The continuous p-median is tied to the unimodal response of
each species to environment model (Austin 1987), which may not be true (see
Ferrier et al. 2002a). Assuming the environmental space as a continuum
would bias the selection of areas to the representation of inexistent conditions,
preventing us of maximizing the coverage of actual biodiversity patterns
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present in the region (Araújo et al. 2003). On the contrary, discrete p-median
accounts for the actual environmental (or spatial) variability of the studied
area. This approach may produce the effect of clustering the selected areas
(Faith 2003), which could potentially reduce species representation in a the-
oretical scenario where the spatial responses of the species are uniformly
distributed along geographic gradients. However, geographic variations in the
distribution of biodiversity are the effect of these spatial responses to local
habitat conditions and historical and population processes (realised niches),
which modify their potential response to a full environmental spectrum
(Araújo et al. 2003). The assumption of a unimodal response model is not
needed in discrete p-median applications. Most applications of this allocation
criterion aim to obtain a selection based in distances obtained from real
spatial information of all demand points in the studied area, independently of
the shape of the relationship between distances and so-obtained (see review in
Church 2002). Thus, an approach based on actual conditions present in the
studied localities, rather than on the full variation in the environmental
spectrum, should be a better descriptor of the patterns of biodiversity
variation throughout the studied region.

To maximize the cost/effectiveness of a survey in describing biodiversity
patterns, the selection of areas to be sampled in a given region must try to
reflect the main compositional variations present in that region. Thus, at least
for a systematic survey planning directed to identify and describe biodiversity
patterns in a given region, it seems better to use a discrete p-median form to
select the TUs that are going to be surveyed, and we use such an approach (see
description below). Studies aimed to characterize potential ecological responses
of the species to environmental variations may obtain better gains using the
continuous p-median form, although the spatially-dependent variation present
in the data must be taken into account to separate the effect of non-environ-
mental spatially-structured factors (see Borcard et al. 1992, Legendre and
Legendre 1998, Lobo et al. 2001, 2002, and Legendre et al. 2002).

Integrating different criteria in a rule-step selection procedure

Since each single step of the greedy algorithm involves the use of different
criteria (e.g. maximizing both environmental and spatial coverage), a procedure
able to take all of them into account is needed. A complete allocation procedure
can be expressed as a set of iterative rules, each pertaining to different criteria,
based on heuristic reserve-selection techniques (see Pressey and Nicholls 1989a
and references therein). ED has been commonly used as part of such multi-
criteria analyses (see Faith et al. 1996). Here, our target points are poorly-
sampled sites, and the starting features are those considered well-sampled, a set
iteratively enlarged to include sites to be sampled one by one. Explicit rules
make the method easily repeatable and understandable (Neldner et al. 1995).
These rules may be chosen from the following, with the order altered at will,
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depending on the purposes of the study or our previous knowledge of the
distribution patterns of the group in the region, and the previous survey effort
carried out there.

Rule 1. Maximize the environmental variation recorded. This rule accounts for
the environmental influence on the distribution of the group. An ED procedure
is applied to the environmental distance matrix. First, the environmental dis-
tance from each i site (demand point) to the set of s previously selected and well-
sampled ones (edi;s) is obtained as the distance of site i to the nearest one of the
s group. Uncovered environmental variation is calculated as the sum of all these
distances in the n unselected sites (

Pi¼n
i¼1 edi;s). Then, the site h that minimizes the

sum that remains when incorporated in the previous s set (
Pi¼n�h

i¼1 edi;sþh) is
selected. If there are more than one site falling within the confidence interval
given by this minimum

Pi¼n�h
i¼1 edi;sþh and the standard deviation of allPi¼n�h

i¼1 edi;sþh, they are also selected and enter the next rule.
Rule 2. Capture extreme environments. Since biodiversity is highly sensitive to

extreme environments, where species rare to the region are expected to appear,
the environmentally most-distant-site (the one that accounts for the maximum
edi;s) is chosen. The confidence interval is defined here as the range between this
maximum edi;s and the standard deviation of all edi;s. All sites in this interval
pass to the next rule.

Rule 3. Maximize the spatial spectrum recorded. Non-environmental pro-
cesses, such as historic or population-related events, modify the response of the
group to the environment. Such response may be different among localities
with similar environmental conditions in the region. To consider such possible
differences, the space covered by the sampling method is maximized again with
a p-median method, where we choose the site that minimizes the sum of dis-
tances to the set of selected sites (

Pi¼n
i¼1 sdi;s) with its inclusion. Again, all those

sites included in the confidence interval of the minimum
Pi¼n�h

i¼1 sdi;sþh are
retained to be tested in the next rule.

Rule 4. Minimize sampling costs. To take into account one of the more
pressing issues of planning biodiversity sampling, the reduction of survey costs
(Austin and Heyligers 1991; Missios 1998), different rules can be used. First, it
is useful to concentrate survey effort on those sites already, though poorly,
sampled. So, we will select the ones that account for greater previous sampling
effort. A second rule can be the choosing of those sites where, with similar
potential gains in biodiversity coverage, the costs of access, due to road density
or distance to the research institutions, are lowest.

Additional Rules. Depending on the purposes of the survey, other rules can
be implemented. For example, if we want to take into account human habitat
alteration, the mean alteration of each site can be calculated easily as a mean
score, using a GIS land-use coverage, after assigning a degree of alteration to
each land-use class. Then, the matrix of metric distances between the degree of
alteration of each site may be used for the p-median selection procedure.
Finally, if there is more than one site selected after applying the last rule, one of
them may be chosen at random.
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The remaining non-selected sites enter again into the first rule of the set.
This process is repeated until a stopping rule identifies the distribution of
sampling as satisfactory. This stopping rule must take into account two main
issues: availability of funds for surveying, and completeness of spatio-envi-
ronmental variation of the region covered (see Faith et al. 1996 and Faith
2001b for a discussion on the use of ED and costs). That is, we must stop if the
maximum number of sites that we have funds for sampling has been selected
or if the RnEDi and the RnSDi are small enough. The latter condition can be
assessed by studying the relationships between the number of places selected
and the uncovered RnEDi and RnSDi that remain after each inclusion (trade-
off curves). As the slope of these curves becomes smaller, it becomes pro-
gressively more expensive to increase our spatio-environmental coverage.
Thus, we stop selecting sites when the potential benefits of increasing our
sampling are low, that is, when the slopes of both curves are small. A more
complete description of trade-off curves and the application of a more devel-
oped methodology to the selection of areas when funds are limited is given by
Faith et al. (1996).

Sampling design

As mentioned above, to recover biodiversity distribution of a region, sampling
design must cover as much as possible of both environmental and spatial
variability as they are perceived by the group studied throughout the region. In
addition, this sampling design must include a continuous sampling-level eval-
uation procedure, to determine which parts of the region have been correctly
inventoried, and where correct inventories can be easily obtained from previ-
ous information. This evaluation procedure should be used after each sampling
campaign to assess effectiveness, and identify those areas which need extra
sampling effort. To account for these issues, we propose a six-stage procedure:

Stage 1: Compiling environmental and biological information

First, it is necessary to define exactly the extent (sensu Whittakker et al. 2001)
and taxonomic group we are going to study. Then, all the relevant information
available for this area and taxon must be compiled in a biological database and
a spatially explicit environmental database stored in a GIS.

Nowadays, the creation of trans-national extensive data banks containing
up-to-date information on biota distribution is becoming a reality, by means of
the GBIF (Global Biodiversity Information Facility; see http://www.gbif.org
and Edwards et al. 2000a). However, this is a complex and slow process, and
for most territories this information must be still compiled in a standardized
format (Bisby 2000a, b; Edwards et al. 2000a, 2000b; Smith et al. 2000). When
studying a given region and taxon, it may be necessary to create the biological
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database from scratch, so we must first develop a database to include all
taxonomic and distributional information available. This information is often
incomplete and heterogeneous, scattered over sources such as scientific publi-
cations with many different objectives, or Natural History Museums and pri-
vate collections. The structure of such databases is often complex (see for
example Biotica, in http://www.conabio.gob.mx/biotica/, or Biota, in http://
www.gobcan.es/medioambiente/biodiversidad/ceplam/bancodatos/biota.html),
but it is useful to include, at least, the following data fields: date of capture or
observation; place (including spatial location coordinates in a common refer-
ence system, such as Geographic (lat/long) or Universal Transverse Mercator
(UTM)); relevant ecologic data (habitat type, feeding, altitude, host species,
etc.); number and sex, if possible, of specimens; capture or observation
method, collector and identification responsible; place of storage (for Natural
History collection specimens) or bibliographic reference; and other available
useful data, such as genetic sequences or morphotype. Although aggregating
the information about the variation in one of this fields (e.g., different dates in
a single year) would result in saving disk-space and funds during the compi-
lation process, reducing the information stored would prevent us to make the
best-possible use of such an information.

Conversely, the development of environmental databases is usually an easier
task. There is an increasing amount of geographically referenced environ-
mental information worldwide. Many countries and trans-national institutions
own GIS data banks, which centralize the environmental information gathered
by different projects, as well as its origin and development methodologies (see
Garcı́a Hernández and Bosque Sendra 2001 or http://www.grid.unep.ch/data/
grid). If this information is available, although scattered, a previous compila-
tion and treatment may be necessary to develop the environmental database of
the studied area. To characterize the environmental spectrum of the region, the
environmental database must include, at least, the following data at the best-
possible resolution: climate data, including common variables such as mean
annual temperature or mean annual precipitation, as well as others which may
be important for the studied group; geomorphologic data, including a digital
elevation model and derived variables (slopes, aspects, etc.); substrate data,
such as geology, soil type and composition or hydrology; land use/land cover
data; and other information about the concrete taxon environmental require-
ments. All this information must be digitized, and fitted onto the same car-
tographic base, that is, same extent (map borders), spatial resolution (pixel
width), and reference system (e.g. UTM or Geographic), so the studied region
is described homogeneously.

When the biological database and the environmental database are available,
it is necessary to define the Territorial Units (TUs) used to study the region, i.e.
the spatial resolution of our survey planning. These units must be the smallest
possible, taking into account: the accuracy of the spatial locations in the
biological database; the spatial resolution of the environmental database; the
extent of the studied region; the sampling objectives; and the investment
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available to carry out the sampling. It is also advisable to choose spatially
homogeneous TUs, kept to a similar shape and area over all the region. The
best option is to use common reference grids, such as those based on geo-
graphic coordinates (e.g. 0.5-degree grid) or those derived from the UTM
system (e.g. 5 km UTM grid). However, irregular TUs, such as vegetation
patches or administrative divisions, can be used when necessary, taking care of
the consequences due to differences in size and shape among the selected TUs
(see Fortin 1999).

Stage 2: Assessing sampling-effort level

Once all available distributional information has been compiled, it is necessary
to determine the accuracy of the inventories for each TU contained in the
biological database. Collector’s curves can provide a good assessment of the
level of knowledge reached with present sampling-effort (see Figure 1). In these
curves, also called species accumulation curves, the cumulative sampling effort
carried out in an area is related to the number of species that are being
sequentially added to its inventory. This relationship is fitted to a function,
which relates the species accumulation with the sampling effort carried out
(Soberón and Llorente 1993; Colwell and Coddington 1994; León-Cortés et al.
1998; Moreno and Halffter 2000; Gotelli and Colwell 2001). These curves have
been used as a tool to predict total species richness by extrapolating the
function found to its asymptote, but its utility is still being debated (see for
example Colwell and Coddington 1994; Gotelli and Colwell 2001; Willott 2001;
Moreno and Halffter 2001; Hortal et al. 2004). However, it is well known that
they are very useful in determining the present rate of finding new species for
the inventory. The slope of the curve at each point determines the species
accumulation rate at that sampling level. As our inventory becomes more
complete, it becomes more infrequent to register the presence of an unknown
species, so this rate (curve slope) decreases. The higher the slope of the curve,
the greater the sampling effort necessary to obtain a good inventory. However,
when this rate is small great sampling effort cannot add significant numbers of
species to the inventory of a given TU. The missing species are those locally
rare or vagrants (see Moreno and Halffter 2000), so the inventory of this TU
can be considered reliable enough, although incomplete.

Collector’s curves require a spatially and temporally homogeneous and
comparable sampling effort unit. In the case of standardized surveys, this unit
is easily defined as hours/person, traps/day, and so on. Unfortunately, distri-
butional information contained in a database such as the biological database
described, which comes from heterogeneous sources, does not lead to a unit of
this kind. As usually there is no information on the sampling effort carried out
when no specimen capture or observation was made (i.e. the survey effort
carried out with no results), it is necessary to examine the biological database
to define a measure of sampling effort, possibly as the number of days spent
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sampling per person and TU, the number of specimens captured, the number
of database-records, and so on.

To assess survey quality on each TU we must fit a function that describes the
increase in the number of species added to the inventory as the sampling effort
increases. As the shape of this curve may vary depending on the order of
sample accumulation, an ‘ideal’ smoothed curve may be obtained by ran-
domizing this order (Colwell 2000). Although many functions have been pro-
posed to describe this relationship, the negative exponential function, the
Clench equation, and the Weibull function have often been used for this task
(Soberón and Llorente 1993; Colwell and Coddington 1994; Flather 1996;
Fagan and Kareiva 1997; Moreno and Halffter 2000).

Once the function has been fitted, it is necessary to decide when this
inventory is complete enough to consider a TU as well-sampled. Although
there are many promising approaches for this task (Gotelli and Colwell 2001;
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Figure 1. Species accumulation curve for the historic dung beetle inventory (Col., Scarabaeoidea)

collected in the UTM 10 km2 grid square 30TVL11 (Cercedilla, Madrid, TU number 18; J. Lobo,

F. Martı́n-Piera and J. Hortal, unpublished data). X axis shows the sampling effort carried out (n;

in this case, number of records in SCAMAD 1.0 database). Y axis shows the number of species found

in the grid cell for each level of sampling effort (Sn). The order the samples enter in the curve has

been randomized 500 times using the EstimateS 6 program (Colwell 2000). Circles: randomized

curve (only 1 of each 20 records is shown). Continuous line: mathematical function fitted to the

curve (Clench equation; Sn ¼ ½0:828 � n=1 þ ð0:009 � nÞ�). Dotted lines are the successive lines

tangent to this function as the sampling effort carried out raises, that is, the slope of the curve in

each sampling effort level. Finally, the horizontal straight line (dots and lines) shows the asymptote

predicted by the adjusted function. Jiménez-Valverde and Hortal (2003).
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Christen and Nakamura 2003), they are still preliminary or too complex to be
easily used. A simple and promising measure of inventory completeness is the
slope of the curve at present sampling-effort level. As no studies have explored
this issue, it is practical to identify as well-sampled all TUs slopes lower than an
arbitrary cut-off value, such as 0.05 (i.e. one species each 20 units of sampling
effort).

Stage 3: Selecting units to sample

As explained above, in this stage the key issue is to sample as much of the
spatio-environmental variability as possible by using the iterative ED assig-
nation procedure (Faith and Walker 1994, 1996). To maximize our knowledge
of the biodiversity in the region, the goal is to complete the set of well-sampled
TUs, maximizing the coverage of the spatio-environmental spectrum perceived
by the taxonomic group, by means of weighted matrices of environmental and
spatial distances. To select each TU, the iterative rule-set multi-criteria decision
method proposed before is applied. The best TU to be sampled is selected at
each step by following the previously defined sequential set of rules, which may
try to maximize the effectiveness of surveys both economizing funds and
covering potential biodiversity. This process is repeated until a stopping rule
indicates that the distribution of sampling is complete enough, either when no
more funds are available or when the non-sampled spatial and environmental
spaces fall below a previously defined cut-off point.

Stage 4: Selecting sampling points on each territorial unit

Within each TU, a variable number of sampling points must be selected to
cover its spatio-environmental variability. Here, a balance between optimum
TU size and the dispersal capacity of the group must be struck. If the TUs are
large, a procedure similar to that described in the previous stage could be used
to allocate sampling points inside them. Otherwise, if TUs are small enough,
simple land cover or physioclimatic-regions maps can be used to place sam-
pling points covering all the different habitats present. A road and/or path
network can be overlaid on these maps, helping to place each sampling point in
easy-access sites.

Stage 5: Choosing field sampling techniques

At each sampling point we must try to collect as many species of the group as
possible. Using a single survey method usually restricts the proportion of the
species of a given group that can be captured. Then, it is advisable to use as
many different kinds of traps, baits or survey methods as possible, taking into
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account the costs of increasing sampling effort. We can define a sample unit as
the combined effort made with methods that have shown to be successful (in
the literature or in a previous study; see an example in Jiménez-Valverde and
Lobo 2004). Furthermore, the number of sampling units used also determines
survey success. Usually, literature and field knowledge about the group provide
a criterion to decide how many samples must be used to balance increasing
effort with costs. When this knowledge is not available, it is possible to carry
out preliminary tests to determine the number of samples that maximizes the
benefits and minimizes the costs. As discussed before for each TU (see Stage 2),
the relationship between sampling effort (here, number of sampling units per
sampling point) and the increase of the captured number of species can be
represented by a species accumulation curve, from which the point of dimin-
ishing returns can be identified. Lastly, the samples must be distributed over
time to account for the seasonal variation of the group.

Stage 6: Sampling success evaluation

To increase survey success, it is necessary to evaluate and improve sampling
design process. This step allows us to use the knowledge we have acquired to
maximize the cost/benefit ratio of the subsequent survey campaigns.

After carrying out each campaign, results must be evaluated, determining the
degree of success. When these results are included in the biological database, a
new species accumulation curve should be plotted for each sampled TU, to
assess the completeness of the new inventory (see Stage 2). If the TU is con-
sidered sufficiently well sampled, we can assume that this inventory is complete.
However, a new survey campaign must be carried out of those TUs where
knowledge remains incomplete, until each selected TU can be defined as well
sampled. The sampling effort in the TUs that remain incompletely sampled
must be examined to determine improvements for future campaigns, by either
increasing the number of sampling sites, survey methods, and samples in each
site or sampling dates.

As mentioned before, if the factor weights used for the environmental
diversity matrix calculation were not extracted from data at the same scale and
extent, this matrix should be recalculated from newly well-sampled TUs. Of
course, all TUs that had been raised to well-sampled status, or even all those
that had been sampled in the first campaign, may then be included in the initial
set of the ED selection procedure (see Stage 3).

A practical example

To illustrate this methodology we present the process of designing a survey to
capture distribution patterns of dung beetles (Coleoptera; Scarabaeoidea) in
the Comunidad de Madrid, an Iberian region.
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Step 1: Information compilation

The Comunidad de Madrid (CM) is a Spanish Autonomous Community, a
triangle-shaped territory, nearly 8000 km2 in extent located in Central Iberia
(Figure 2). Its northern angle lies at 41�80 N, whilst its southernmost point is
located 140 km away, at 39�520 N in the Tajo valley. The triangle base is about
125 km long, between the longitudes 4�310 W and 3�60 W. Although the mean
altitude is around 800 m.a.s.l., it ranges from 2430 m.a.s.l. in the ‘‘Sistema
Central’’ mountain range to 434 m.a.s.l. in the Alberche valley. Moreover, its
geological history is highly heterogeneous, leading to the present heteroge-
neous lithology, that includes acid-rock mountains (granite and gneiss), a ramp
of acidic and coarse-grained sands, many alluvial, fine-grained soils at low-
lands, and a clay, limestone and gypsum soil plateau. Thus, in spite of its small
extent, CM is a highly heterogeneous region; its habitats represent almost all of
those of the Iberian Central Basin. A preliminary survey design is necessary to
capture all Scarabaeoidea diversity patterns that may have been produced by
this environmental heterogeneity and the complex history of Central Iberia.

SCAMAD is a biological database that compiles all the available information
for CM and its surrounding territories from Museum, University and private
collections, as well as the distributional information published in the literature.
This information is geo-referenced when possible, with at least a 10 � 10 km
resolution. Iberian Scarabaeoidea dung beetles are a taxonomically well-
known group (Martı́n-Piera 2000; López-Colón 2000; Veiga 2000), which
comprises the species of three families: Scarabaeidae, Geotrupidae and
Aphodiidae.

Figure 2. Geographic location and shape of the Comunidad de Madrid region.
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The information used to construct the environmental database comes from
heterogeneous sources. The CM digital elevation model was extracted from a
Global DEM with 1 km spatial resolution (Clark Labs 2000a). Slopes and
Aspects for each 1 km cell where calculated using Idrisi 32 GIS software (Clark
Labs 2000b). Thirty-year mean monthly values of precipitation and maximum
and minimum temperatures for 41 stations of Central Iberia where obtained
from an agroclimatic atlas (Ministerio de Agricultura, Pesca y Alimentación
1986). This data provided mean annual and summer precipitation, mean,
maximum and minimum annual temperatures, and temperature range, and then
interpolated onto 1 km spatial resolution maps using a distance weighted-
average method (INTERPOL module of Idrisi; Clark Labs 2000b). An 11-category
lithology map was also digitized from a CM Atlas (ITGE 1988), also at a 1 km
spatial resolution. A land cover map at a 1 km spatial resolution was obtained
by reclassifying and enlarging the 250 m European Land Use/Land Cover map
provided by the CORINE programme (European Environment Agency 1996). A
1:200.000 phytoclimatic regionalization of Spain was digitized for the CM
territory (Rivas-Martı́nez 1987). Finally, we obtained additional cartography,
such as roads, rivers, or administrative limits from the digital version of the CM
1:200.000 map (Servicio Cartográfico de la Comunidad de Madrid 1996). All
digital maps where reprojected to a UTM 30N reference system when necessary.

The environmental database spatial resolution was 1 km, that is, 100 pixels
for each territorial unit of 10 km2. On the other hand, although many bio-
logical records were referred to 1 km UTM coordinates, nearly all the bio-
logical records in SCAMAD could be referred to a 10 km resolution grid, so
choosing a 1 km scale may have led to the lose of some useful biological
information. Moreover, many dung beetle species can fly several kilometres a
day, so at a smaller scale this high vagility would obscure biodiversity patterns.
Thus, it makes sense to use the 10 km UTM grid to define the TUs we are
going to use. The 108 UTM 10 � 10 km grid squares that had more than 5%
of their territory in CM where chosen as TUs (Figure 3a).

Step 2: Sampling-effort assessment

In this step, we analyze the initial version of SCAMAD (v. 1.0) to determine which
TUs can be considered well-sampled enough to obtain a good picture of its dung
beetle fauna. First, this database was examined to ascertain which sampling-
measure unit could be extracted for further analyses. Although many records
contained date of capture, others lack this information. In addition, the origin
of records was highly heterogeneous (standardized samplings, non-professional
collections, etc.), so different dates also result in differences in sampling effort.
Thus, to homogenize this information, using nearly all records, we define a
sampling unit as each record in the biological database (i.e. each time a species is
recorded by a different method or collector, regardless of the number or sex of
specimens). To give rise to a new sampling unit, these records must differ at least
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in one of the following SCAMAD database fields: capture date, place of capture,
habitat type, feeding, capture or observation method and collector.

Five thousand three hundred and sixty four (5364) database records for 146
species were available at the beginning of the sampling design (on SCAMAD 1.0),
although only 5237 could be referred to any one of the 108 TUs (Figure 3b).
We estimated the ‘ideal’ species accumulation curves only for those TUs with
more than 50 database records, randomizing the order of entrance of each
record in the curve 500 times, and calculating the mean values of richness at
each cumulative-effort-step using the EstimateS program (Colwell 2000). Then,
we tried to fit these curves both to the negative exponential function and to the
Clench equation. The latter gave better results, so we used it to fit the ran-
domized curves, calculating the final slope of the fitted function for each TU
(Table 1). Preliminary results showed that the asymptote values predicted for
the curves as records increase become regular at a slope value of 0.1, so we used
this score as a cut-off point. The TUs with final slopes equal to or lower than
0.1 where selected as well-sampled (Table 1, Figure 4), constituting the initial
set of the following selection procedure.

Step 3: Selecting territorial units to sample

To define our selection rules we assumed, as a preliminary hypothesis, that
dung beetle diversity in CM is influenced by three main groups of environ-
mental variables (climate, topographic and geologic), and by many contingent

Figure 3. (a) Ten km2 UTM cells of the Comunidad de Madrid selected as territorial units (TUs)

for dung beetle inventory assessment. (b) Number of database records in SCAMAD (a database of the

Scarabaeoidea dung beetles of the Comunidad de Madrid) for each 10 km2 UTM grid square.

White: less than 10 database records; Light Grey: 10–24 database records; Medium Grey: 25–49

records; Dark Grey: more than 50 records. The species accumulation curves have been carried out

only for this latter group (see Table 1).
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factors that may have produced a spatial pattern. In addition, we must take
into account funds availability. So we defined six iterative rules to select the
TUs that may be sampled (see the multi-criteria allocation of samples section).
If more than one TU is selected by a rule, they enter into the next one:

0. Select as initial set all the well sampled TUs (i.e., with final slopes lower than
0.1).

1. Select the TU that minimizes the non-recorded environmental spectrum, by
means of applying an ED allocation procedure to the matrix of environ-
mental distances. This rule aims to increase biodiversity coverage through
sampling the full environmental spectrum (see Rule 1 in the Multi-criteria
allocation of sample sites section).

2. Select the TU with most database-records. This way, field costs are reduced,
as less survey effort (which will result in new database records) is needed to
raise a good inventory of a given TU when previous information is available
(see Rule 4).

3. Select the TU environmentally more distant from the previously selected set,
i.e., the one at a maximum distance from the selected set in the matrix of
environmental distances. Here, the aim of the rule is to sample extreme

Figure 4. Territorial units of the Comunidad de Madrid chosen by the iterative rule set selection

procedure taking into account both environmental and spatial information (see text and Table 5).

Numbers are the step at which each TU was selected, and colours the final rule (criteria) used for

each selection. White: initially well-sampled (rule 0); Dark Grey: environmental p-median (ED

applied to environmental distances; rule 1); Medium Grey: number of records (rule 2); Light Grey:

spatial p-median (ED applied to geographic distances; rule 4).
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environments, which may host species rare in the region due to their
selection of marginal habitats (see Rule 2).

4. Select the TU that maximizes the spatial spectrum recorded, that is, apply
an ED allocation procedure to the matrix of spatial distances. This rule and
the following one aim to cover faunistic differences due to the non-envi-
ronmental spatial replacement (see Rule 3).

5. Select the TU at a maximum geographic distance from the selected set using
the matrix of spatial distances.

6. Select just one TU randomly from all that have reached this rule.
To define the environmental distance matrix, we first extracted from the

environmental database the scores of the environmental variables for each TU,
assigning each one to the three environmental groups of variables previously
defined (see Table 2). All environmental variables were first mean centered.
Then, a PCA was applied to the climate and topographic group of variables.

Table 1. Species accumulation curves fitted for all TUs (10 km2 UTM cells of the Comunidad de

Madrid) with more than 50 database records (see Figure 4).

UTM Cell SCAMAD Curve Fitting Results

N� Name Sr r A B VE (%) Asymptote Final slope

5 30TVL54 34 67 1.082 0.0165 99.96 65.6 0.2442

6 30TVL64 41 102 1.122 0.0170 99.82 66.0 0.1502

12 30TVL22 43 119 1.021 0.0153 100 66.7 0.1283

13 30TVL32 37 92 1.078 0.0182 99.97 59.3 0.1511

18 30TVL11 86 1127 0.828 0.0090 99.28 92.0 0.0067

24 30TUL90 38 98 1.080 0.0182 99.99 59.4 0.1397

25 30TVL00 50 168 0.988 0.0140 99.99 70.8 0.0884

26 30TVL10 56 162 1.040 0.0123 99.99 84.5 0.1160

28 30TVL30 43 542 1.118 0.0246 99.86 45.4 0.0054

29 30TVL40 29 148 0.960 0.0264 99.96 36.3 0.0398

33 30TVK09 89 487 0.861 0.0079 99.56 108.5 0.0364

34 30TVK19 36 74 1.013 0.0150 99.95 67.6 0.2278

46 30TVK38 45 119 0.798 0.0096 99.89 83.4 0.1746

52 30TUK77 41 283 0.779 0.0155 99.73 50.2 0.0268

58 30TVK37 41 65 0.982 0.0087 99.97 112.6 0.4001

59 30TVK47 39 72 0.940 0.0110 99.98 85.1 0.2918

60 30TVK57 36 140 1.034 0.0215 99.99 48.1 0.0643

64 30TUK76 50 183 0.954 0.0137 99.95 69.4 0.0772

65 30TUK86 39 71 0.905 0.0094 99.95 96.6 0.3264

69 30TVK26 27 59 0.923 0.0174 99.98 53.1 0.2248

72 30TVK56 41 95 0.861 0.0109 99.84 79.0 0.2078

73 30TVK66 30 136 0.979 0.0259 99.87 37.8 0.0480

82 30TVK25 51 180 0.964 0.0134 100 72.2 0.0832

Sr and r are, respectively, the number of species observed and the number of database records

extracted from SCAMAD 1.0 (the database of Scarabaeoidea dung beetles of the Comunidad de

Madrid). A and B are fitted scores for the parameters of the Clench Equation (Sr ¼ A � r=1þ B � r;
Soberón and Llorente 1993). VE is the percentage of variance explained by the fitted equation. The

predicted asymptote was calculated as A/B, following Soberón and Llorente (1993). TUs identified

as well sampled are highlighted. TU numbers as in Figure 3.
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Geologic variables were derived as proportions from a categorical map, so a
PCoA was carried out for this group of variables. Significant factors are chosen
using the broken-stick method (Table 3). PCA and PCoA calculations were
made using STATISTICA (StatSoft 1999) and R-Package (Casgrain and Legendre
2001), respectively.

As there were only 10 well-sampled TUs, and they were unevenly distributed
(see Figure 4), the relative weights of each group of variables could not be
extracted from the Madrid dataset. No preliminary hypothesis was available
on the magnitudes of these weights, so the environmental and biological data
were extracted from a previous study of the Iberian Scarabaeinae species on a
spatial scale of 50 km (see Lobo and Martı́n-Piera 2002). We modeled species
richness with the variables that belong to each environmental group of vari-
ables using a GLM analysis, testing the deviance from a null model (Table 4).
The explained deviance for each group of variables was taken as its respective
weight.

The environmental distance matrix was calculated using the selected signif-
icant factors of each group of variables, and the Gower’s similarity index as the
measure of resemblance. The weight applied in the Gower’s similarity index

Table 2. Environmental variables included in each one of the three environmental groups of

variables defined.

Groups of

Variables

Variable name Definition

Climate

Summer precipitation Average value in the TU

Annual precipitation "

Maximum annual temperature "

Mean annual temperature "

Minimum annual temperature "

Annual temperature variation maximum minus minimum temperature

Topographic

Mean aspect Average value in the TU

Mean slope "

Slope variation Maximum minus and minimum slopes

Aspect diversity Shannon-Wiener index of the frequencies of each

aspect or slope class in the TUSlope diversity

Minimum elevation Minimum value in the TU

Maximum elevation Maximum value in the TU

Mean elevation Average value in the TU

Altitude range Maximum minus minimum elevation

Geologic

Soil geology diversity Shannon-Wiener Index of the frequencies of each

soil class in the TU

Acid bedrocks Surface covered

Basic bedrocks "

Acid sediments "

Basic sediments "
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was the variation explained by each factor multiplied by the weights of each
group of variables previously calculated using all the 50 km UTM Iberian
data. The spatial distance matrix was calculated as the Euclidean distances
between the centroids of all TUs.

All 108 TUs entered in the rule-set selection procedure. Ten were identified
as well-sampled, and the rest were tested for inclusion, being selected one by
one (see process in Figure 3). After each inclusion in the survey group, we
examined the curves that describe the amount of environmental and spatial
distance uncovered as we add new TUs to this group (Figure 5). After 15
inclusions, the slope of both curves started to fit the horizontal thus reducing
potential benefits in spatio-environmental coverage provided by the addition of
new sites to the group of selected areas. In addition, according to the funds and
staff available, it would have prevented us from carrying out and evaluating all
surveys in the following two years. So we decided to sample only these 15 TUs
(Table 5 and Figure 4). In all cases but one, the selection was tied to the first

Table 3. Significant factors extracted in the ordination analysis carried out with the environmental

variables of each variable group (Table 2).

Variables group Factors Eigenvalue Explained

variation (%)

Cumulative

variation (%)

Climate

Factor 1 4.408 73.47 73.47

Topographic

Factor 1 6.490 72.12 72.12

Geologic

Factor 1 7.681 45.01 45.01

Factor 2 2.736 16.03 61.04

Factor 3 1.535 8.99 70.03

Factor 4 1.336 7.83 77.87

For climate and topographic variables PCA factors were selected using the Broken-Stick criterion

(see Legendre and Legendre 1998) whilst, in the case of the PcoA (Geologic variables), all factors

with eigenvalues higher than one were selected (see Casgrain and Legendre 2001). In the case of

PcoA a negative eigenvalue correction by Lingoes (1971) has been made (see also Casgrain and

Legendre 2001).

Table 4. Goodness of fit of the GLM models accomplished by using the species richness of

Scarabaeidae species in the Iberian UTM 50 km grid squares as dependent variable, and different

groups of environmental variables in these squares (see Lobo and Martı́n-Piera 2002).

df dev dev/df Ddev F VE (%)

Null model 81 153.48 1.895

Climate variables 74 107.78 1.456 45.70 31.37 29.77

Topographic variables 74 121.87 1.647 31.61 19.19 20.59

Geologic variables 77 136.47 1.772 17.01 9.60 11.09

df, degrees of freedom; dev, deviance; Ddev, change in deviance; VE is the percentage of variation

explained by the models.
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two rules, so the here-obtained selection was mostly based on environmental
variation (Table 5). That is, the times when several TUs providing equivalent
gains in environmental coverage were selected, sampling effort differences
promoted the selection of one of them. In the only case were a geographic
coverage was needed (Step 3), two contiguous Territorial Units (TU numbers
31 and 39, see Figure 3) passed the first three rules. TU 39 was selected with the
fourth one (maximize spatial coverage), as TU 31 was closer to TU 29, which is
part of the initial set (see Figure 4). However, both TUs were environmentally
similar, so environmental variation also ruled out for this selection.

Step 4: Selecting sampling points within each territorial unit

TU resolution (10 km2) was small enough to determine sampling points di-
rectly with the land cover data (European Environment Agency 1996) and
phytoclimatic classification maps (Rivas-Martı́nez 1987). We also overlaid
roads on both maps and determined three 1 km cells in each selected TU. Each
cell was also placed as far as possible from the other two in order to account
for non-ecological small-scale spatial patterns in species composition. As dung
beetles feed and nest mainly on livestock droppings, they are likely to appear
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Figure 5. Decrease of the amount of uncovered environmental variability of the Comunidad de

Madrid region after each inclusion of a new TU to be sampled. According to the ED criterion

applied to environmental distances, uncovered environmental variability is measured as the sum of

pairwise distances between each non-selected TU and the previously selected set. Step numbers

(X axis) are as in text, Figure 4 and Table 5.
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near this food source. On the other hand, in the Mediterranean area, open
biomes support much greater dung beetle abundance and richness than do
closed biomes, which do not have exclusive species (Lumaret 1980; Lumaret
and Kirk 1987). These issues were taken into account during field work, when
sampling points were placed in the most suitable places inside those grid cells.

Step 5: Choosing sampling methodologies

As Iberian dung beetle populations present two main seasonal peaks, in spring
and autumn (Martı́n-Piera et al. 1992; Lobo and Martı́n-Piera 1993; Lobo
et al. 1997), the sampling program was designed to collect both spring and
autumn inventories: each sampling point was sampled in both seasons. The
baited pitfall traps recommended by Lobo et al. (1988) and Veiga et al. (1989)
were used to sample dung beetle communities. In Mediterranean conditions
very few baited traps are needed to give a good picture of the structure and
composition of a dung beetle assemblage (Lobo et al. 1998). To collect the
main assemblage composition, five traps placed 10 m apart and baited with
fresh cow dung were set in each sampling site for a period of 48 h each season.

Step 6: Sampling success evaluation

After carrying out the field work in the selected TUs, it is necessary to evaluate
both the reliability of the inventories obtained in each territorial unit, and the
consistency of the regional inventory estimated with all the selected TUs. The
first task can be accomplished incorporating the new biological information for
each TU and recalculating the species accumulation curves; the second one
using available parametric and non-parametric methods to estimate species
richness (Colwell and Coddington 1994), comparing with the estimated and the
recovered number of species.

In the case of CM dung beetles, two preliminary survey campaigns carried
out in four southeastern TUs (numbers 89, 98, 102 and 108) located in an
unsampled region (see Figure 3) have allowed us to find abundant populations
of some species previously considered rare in Central Iberia, and the presence
of others unknown in this area. The accumulation curves for each TU indicate
that a high proportion of the local dung beetle inventory was captured.
However, when the final slopes of these TUs were calculated they were much
higher than the 0.1 cut-off point (Figure 6). This could mean that we are using
a low number of (i) sampling places, (ii) sampling methodologies, or (iii)
sampling dates, so we cannot capture reliable inventories. To overcome this
drawback, in the following campaigns, a fourth sampling point was placed on
each selected TU. Moreover, additional sampling was intended to be done
throughout the year, by means of light traps or transects on foot capturing
dung beetles by hand. Due to time and funds limitations, surveying the 15
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selected TUs required 2 years of field work. Although this work has been
almost totally accomplished, it is still necessary to conclude the taxonomic
determination of the collected material to include survey results in a new
version of SCAMAD, and analyze current sampling-effort level in the sampled
TUs as made with version 1.0 of this database (see Step 2). The so-obtained
data is needed to evaluate the successfulness of the here presented sampling
design protocol.

Discussion

Funds availability is always an important issue in recent survey design litera-
ture (Austin and Heyligers 1989, 1991; Neldner et al. 1995; Neave et al. 1997;

Table 5. Summary of the iterative procedure to select those territorial units (TUs) to be sampled.

Step TU UTM designation Selection rule Value r

0 28 30TVL30 0 0.0054 542

0 18 30TVL11 0 0.0067 1127

0 52 30TUK77 0 0.0268 283

0 33 30TVK09 0 0.0364 487

0 29 30TVL40 0 0.0398 148

0 73 30TVK66 0 0.0480 136

0 60 30TVK57 0 0.0643 140

0 64 30TUK76 0 0.0772 183

0 82 30TVK25 0 0.0832 180

0 25 30TVL00 0 0.0884 168

1 102 30TVK83 2 1 1

2 5 30TVL54 2 67 67

3 39 30TVK69 4 1526.65 0

4 56 30TVK17 1 23.12 5

5 108 30SVK31 1 22.34 18

6 58 30TVK37 1 21.72 65

7 53 30TUK87 1 21.12 0

8 8 30TVL33 1 20.59 30

9 27 30TVL20 1 20.07 26

10 63 30TVK87 1 19.58 0

11 89 30TVK95 1 19.15 0

12 16 30TVL62 1 18.74 1

13 30 30TVL50 2 19 19

14 98 30TVK43 2 35 35

15 59 30TVK47 2 72 72

The initial set of well-sampled TUs is listed at step 0. TU number as given in Figure 3. Selection

rule refers to the criterion that finally selected the TU, and the numbers correspond to those

described in the text (see Selecting territorial units to sample). Value is the score of the TU in this

selection rule: rule 0 – final slope in the species accumulation curve, 1 – Sum of environmental

distances to the selected set after this inclusion, 2 – Number of records in SCAMAD 1.0, and 4 – Sum

of spatial distances to the selected set after this inclusion, in km. r is the number of database records

compiled in SCAMAD 1.0 for each TU.
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Wessels et al. 1998; Austin 1998; Barnett and Stohlgren 2003). Fortunately,
nowadays it is possible to use many methodologies to extend the information
from some localities to the full extent of the region. Sampling the full range of
environmental and spatial variation ensures that predictive models truly
interpolate biodiversity variables in other environmentally similar localities,
rather than extrapolate the scores of the predictive variable to localities with
different environmental conditions (Austin and Heyligers 1989; Ferrier 2002;
Ferrier et al. 2002a, b). Although it is not necessary to sample the whole
territory, survey costs must be balanced against the completeness of the sam-
pled variation of biodiversity. Our method aims to obtain better cost-effective
surveys. It is possible to diminish the amount of sampling effort necessary to
obtain a good picture of the diverse assemblages present there by: (i) using the
previous knowledge about the inventories of a region; (ii) establishing obtained
results feedback to the survey design; (iii) optimizing our survey design to both
cover a greater range of variation of the studied group with fewer sampling
points; (iv) locating them in easily accessible places.

In a recent simulation, Hirzel and Guisan (2002) found that data obtained by
regular and equal-stratified (the same number of sampling plots per environ-
mental region) sampling designs improved robustness and accuracy of
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Figure 6. Collector’s curves of the TU 98 (UTM code 30TVK43) before and after the first

sampling campaign. Cumulative sampling effort is measured as the number of records stored in the

SCAMAD 1.0 database. Both curves have been randomized 100 times (Colwell 2000; see text). Empty

circles and discontinuous line correspond, respectively to the observed data (only each fifth record

is shown) and the estimated curve before the sampling. Full triangles and continuous line do so for

the observed data and estimated curve after the sampling was made.
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single-species predictive models. However, although in their simulation the
‘real’ distribution of a virtual species in a restricted studied area was a direct
function of its environmental requirements, they found a higher effect of
sample size in that estimates. When sampling natural patterns, unconsidered
effects on species distributions (i.e. historic events, meta-population dynamics
and stochasticity) also appear, an even higher sampling effort may be needed.
This becomes even more important when surveying a group of species instead
of just one. Although still untested, including both spatial location and envi-
ronmental variation in site selection may produce better coverage of distri-
bution patterns that random, regular or stratified samplings, diminishing the
resource and time-consuming task of increasing sampling effort.

It has been widely accepted that covering all the environmental diversity in a
region leads to the detection (or protection in the case of reserve selection
procedures) of the full range of variation of biological diversity (but see debate
in Araújo et al. 2001, 2003 and Faith 2003). From this picture, gradsect
(Gillison and Brewer 1985; Austin and Heyligers 1989, 1991) and stratified
(Bunce et al. 1996) methods seem to be a correct approach for biological
diversity sampling. In general, environmental stratification provides a more
efficient strategy than random or systematic sampling (Cochran 1977), because
the latter would not lead to different types of landscape to being surveyed,
resulting in a limitation of the heterogeneity sampled (Bunce et al. 1996). Kish
(1965) pointed out that gradsect and stratified methods produce gains that are
only small or moderate, an opinion supported by the results of Neave et al.
(1997), who find no benefit in using these approaches instead of random
sampling in estimating bird species richness in SE Australia. However, the
results of Wessels et al. (1998) show clearly that both stratified and gradsect
methods produced better coverage of the diversity of dung beetles and birds in
a South-African reserve. These results are consistent with the intuitive idea that
randomization is largely irrelevant where the principle survey objective is the
detection of the maximum diversity possible (Gillison and Brewer 1985;
Wessels et al. 1998; Faith 2003). Applying the ED criterion to environmental
diversity may improve the results of these two former methods, as it takes into
account all the variability among sites, not only land classes (stratified
methods) or just a given environmental gradient (gradsect method).

However, environmental diversity alone may not be a good predictor of
biodiversity (Araújo et al. 2001, but see Faith 2003; Araújo et al. 2003). As
pointed out by Austin and Heyligers (1991), gradsect selection does not ensure
adequate representation of diversity variation due to the absence of factors not
included in the selection criteria, an effect that increases with increasing extents
and spatial resolutions. Historic and population-dynamics events modify the
pure environmental component of biodiversity distribution, leading to spatially
modified patterns (see Ferrier 2002 for a discussion). So distributing our
sampling points over both environmental and spatial spectrums would theo-
retically improve the range of diversity variation covered by the survey, thus
giving a better representation of the assemblages present in the region. Ferrier
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accounts for this using both environmental and spatial data in the generation
of a single distance matrix through GDM, which is then used for selection
processes.

The development of our selection procedure, however, relied largely on the
results of the ED-environmental criterion used in the first rule. Apart from
being the first per order of application, two factors may have promoted the
importance of this rule: extent of analysis and spatial autocorrelation of
environmental variables. On the one hand, Madrid is a small region (with
maximum spatial distances of around 150 km), and only 108 TUs were used
for the analysis. On the other, it constitutes an environmentally heterogeneous
territory, where the coupled variation in altitude, climate, geology and land use
has produced a few marked environmental gradients in a small geographic
space, as well as the absence of similar habitats in separate areas. Thus, whilst
spatial distances are not of much importance in Madrid, environmental con-
ditions vary strongly between spatially close TUs. Analyses carried out at
larger extents (e.g. the Iberian Peninsula or Europe) and/or environmentally
homogeneous areas (e.g. Patagonian steppes) would take a better approach of
geographic distance rules.

Although still incomplete, preliminary results stress the usefulness of the
here-presented protocol. From the 108 defined TUs, 10 proved to be suffi-
ciently well-sampled, and sampling only an additional 15 could provide a good
spatio-environmental coverage. It seems that with only 60 sampling points (15
TUs � 4 sampling points in each TU), comprising 600 baited pitfall traps (5
traps per site � 2 season campaigns), a good knowledge of the distributions of
dung beetle species and assemblages in Madrid can be obtained. A preliminary
survey carried out in the selected TUs located farther from the well-sampled
ones has detected both species and assemblages previously unknown or con-
sidered rare in Madrid (J. Hortal, J.M. Lobo, F.J. Cabrero-Sañudo and
F. Martı́n-Piera, unpublished), one of the best-known regions in Iberia.
However, once the complete results of this survey are available, an evaluation
similar to the one carried out by Wessels et al. (1998) is needed to determine by
how much this method improves on the results of prior ones.

We have used a heuristic algorithm for TU selection due to the need for a
multi-criteria assessment. The main advances in this field are referred to reserve
selection procedures, where the aim is to protect as much variation as possible
of the attributes selected. As is pointed out by Pressey and Nicholls (1989b),
including the different criteria iteratively and separately (i.e. the heuristic ap-
proach) gives better results than scoring them in order to obtain single values
for each TU. Also, this approach involves simple computations, once all the
criteria have been well defined and are available for calculation. Moreover, it
allows indirect weighting of the importance of each criteria by means of their
order of entrance in the analysis. Optimization algorithms, where all criteria
are optimized at the same time instead of one by one, are a promising tool for
this assessment, as nowadays they can be easily implemented using linear
programming techniques, and computing time is relatively low with the
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desktop computers available (Rodrigues and Gaston 2002). However, greedy
selection methods, such as the one used here, provide an useful tool to develop
an ordered list of sites, where each addition seeks for the best-possible
improvement in the previous set. This step-by-step-gains rationale is most
similar to the way that conservation policies (or sampling campaigns) are
carried out: unfortunately, in many cases funds availability imposes that new
sites are added in this fashion, once funds are being available.

This method may be useful for elucidating many of the present conservation
insights focused on biodiversity. Once sampling campaigns have been im-
proved, their final design can be repeated in the future in order to also sample
temporal changes in biodiversity due to climate or land use changes. On the
other hand, reserve selection procedures provide better results the more reliable
the biological data. Furthermore, our method has been designed following a
similar rationale to that of many reserve selection procedures. If it succeeds in
allowing us to sample all diversity variation, including similar criteria in reserve
selection protocols, such as BioRap (see Faith 2001a, b and references therein),
may allow us to protect all diversity variation when both good biological data
and funds for surveying are lacking. To explore this possibility, an evaluation
of its potential as a reserve selection procedure, such as the Araújo et al. (2001)
one, must be made.
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4.0d3.. Département de Sciences Biologiques, Université de Montréal Available at http://
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Écoscience 6(4): 636–641.
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